Properties

Label 2.179.abu_bia
Base field $\F_{179}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{179}$
Dimension:  $2$
L-polynomial:  $1 - 46 x + 884 x^{2} - 8234 x^{3} + 32041 x^{4}$
Frobenius angles:  $\pm0.124666363590$, $\pm0.207564932480$
Angle rank:  $2$ (numerical)
Number field:  4.0.3961152.8
Galois group:  $D_{4}$
Jacobians:  $24$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $24646$ $1015563076$ $32893857764062$ $1054016669103091408$ $33770157588649505674366$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $134$ $31694$ $5735294$ $1026680598$ $183767172154$ $32894129732366$ $5888046470590978$ $1053960289949796574$ $188658891711412168742$ $33769941616188670342814$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{179}$.

Endomorphism algebra over $\F_{179}$
The endomorphism algebra of this simple isogeny class is 4.0.3961152.8.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.179.bu_bia$2$(not in LMFDB)