# Stored data for abelian variety isogeny class 2.179.abu_bia, downloaded from the LMFDB on 01 November 2025. {"abvar_count": 24646, "abvar_counts": [24646, 1015563076, 32893857764062, 1054016669103091408, 33770157588649505674366, 1082023235088495263311039204, 34669090274492962305437062942438, 1110832291672720114917396212760425472, 35592177421715631845628531861353387918518, 1140408956763986346477720327973176807883078756], "abvar_counts_str": "24646 1015563076 32893857764062 1054016669103091408 33770157588649505674366 1082023235088495263311039204 34669090274492962305437062942438 1110832291672720114917396212760425472 35592177421715631845628531861353387918518 1140408956763986346477720327973176807883078756 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.124666363590315, 0.207564932480373], "center_dim": 4, "curve_count": 134, "curve_counts": [134, 31694, 5735294, 1026680598, 183767172154, 32894129732366, 5888046470590978, 1053960289949796574, 188658891711412168742, 33769941616188670342814], "curve_counts_str": "134 31694 5735294 1026680598 183767172154 32894129732366 5888046470590978 1053960289949796574 188658891711412168742 33769941616188670342814 ", "curves": ["y^2=144*x^6+103*x^5+121*x^4+153*x^3+116*x^2+117*x+173", "y^2=35*x^6+84*x^5+72*x^4+33*x^3+97*x^2+85*x+109", "y^2=x^6+153*x^5+87*x^4+131*x^3+60*x^2+167*x", "y^2=133*x^6+74*x^5+164*x^4+169*x^3+104*x^2+174*x+41", "y^2=88*x^6+88*x^5+54*x^4+55*x^3+30*x^2+20*x+171", "y^2=102*x^6+148*x^5+48*x^4+66*x^3+142*x^2+170*x+55", "y^2=62*x^6+42*x^5+85*x^4+3*x^3+86*x^2+130*x+161", "y^2=78*x^5+44*x^4+136*x^3+127*x^2+168*x+104", "y^2=4*x^6+61*x^5+56*x^4+78*x^3+56*x^2+159*x+176", "y^2=176*x^6+108*x^5+34*x^4+31*x^3+91*x^2+6*x+157", "y^2=107*x^6+16*x^5+90*x^4+176*x^3+73*x^2+147*x+4", "y^2=114*x^6+74*x^5+83*x^4+141*x^3+50*x^2+73*x+42", "y^2=165*x^6+44*x^5+160*x^4+67*x^3+95*x^2+13*x+174", "y^2=175*x^6+60*x^5+117*x^4+156*x^3+29*x^2+26*x+141", "y^2=131*x^6+125*x^5+129*x^4+82*x^3+38*x^2+137*x+112", "y^2=167*x^6+11*x^5+130*x^4+17*x^3+102*x^2+27*x+133", "y^2=161*x^6+57*x^5+6*x^4+35*x^3+85*x^2+80*x+42", "y^2=53*x^6+90*x^5+178*x^4+145*x^3+18*x^2+38*x+21", "y^2=24*x^6+25*x^5+122*x^4+154*x^3+129*x^2+95*x+98", "y^2=113*x^6+40*x^5+67*x^4+32*x^3+76*x^2+160*x+68", "y^2=139*x^6+46*x^5+123*x^4+65*x^3+86*x^2+12*x+73", "y^2=162*x^6+67*x^5+22*x^4+109*x^3+76*x^2+49*x+156", "y^2=96*x^6+29*x^5+97*x^4+30*x^3+105*x^2+41*x+118", "y^2=32*x^6+151*x^5+16*x^4+12*x^3+49*x^2+160*x+72"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.3961152.8"], "geometric_splitting_field": "4.0.3961152.8", "geometric_splitting_polynomials": [[1777, -22, 92, -2, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 24, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 24, "label": "2.179.abu_bia", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.3961152.8"], "p": 179, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -46, 884, -8234, 32041], "poly_str": "1 -46 884 -8234 32041 ", "primitive_models": [], "q": 179, "real_poly": [1, -46, 526], "simple_distinct": ["2.179.abu_bia"], "simple_factors": ["2.179.abu_biaA"], "simple_multiplicities": [1], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.3961152.8", "splitting_polynomials": [[1777, -22, 92, -2, 1]], "twist_count": 2, "twists": [["2.179.bu_bia", "2.32041.ank_fafa", 2]]}