Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 367 x^{2} - 2825 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.219440650796$, $\pm0.367525988332$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.257303429.1 |
Galois group: | $D_{4}$ |
Jacobians: | $65$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10287$ | $164458269$ | $2086899176079$ | $26588693445738021$ | $339457144303470658032$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12879$ | $1446323$ | $163073435$ | $18424373794$ | $2081951017623$ | $235260551518543$ | $26584442014871539$ | $3004041936497335349$ | $339456738942756065214$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 65 curves (of which all are hyperelliptic):
- $y^2=48 x^6+101 x^5+74 x^4+54 x^3+102 x^2+59 x+10$
- $y^2=31 x^6+83 x^5+74 x^4+94 x^3+88 x^2+103 x+101$
- $y^2=24 x^6+58 x^5+81 x^4+106 x^3+19 x^2+39 x+47$
- $y^2=22 x^6+38 x^5+4 x^4+38 x^3+94 x^2+23 x+82$
- $y^2=82 x^6+84 x^5+24 x^4+81 x^3+36 x^2+38 x+90$
- $y^2=21 x^6+81 x^5+107 x^4+24 x^3+111 x^2+42 x+28$
- $y^2=103 x^6+78 x^5+108 x^4+101 x^3+6 x^2+31 x+40$
- $y^2=50 x^6+90 x^5+34 x^4+101 x^3+54 x^2+60 x+93$
- $y^2=47 x^6+21 x^5+31 x^3+x^2+99 x+6$
- $y^2=110 x^6+69 x^5+57 x^4+75 x^3+32 x^2+3 x+61$
- $y^2=72 x^6+5 x^5+56 x^4+31 x^3+81 x^2+31 x+67$
- $y^2=35 x^6+85 x^5+95 x^4+98 x^3+58 x^2+7 x+54$
- $y^2=68 x^6+33 x^5+99 x^4+64 x^3+77 x^2+102 x+83$
- $y^2=99 x^6+66 x^5+9 x^4+51 x^3+25 x^2+105 x+21$
- $y^2=85 x^6+29 x^5+108 x^4+10 x^3+82 x^2+7 x+73$
- $y^2=65 x^6+31 x^5+87 x^4+16 x^3+62 x^2+60 x+29$
- $y^2=25 x^6+72 x^5+31 x^4+79 x^3+56 x^2+105 x+30$
- $y^2=51 x^6+88 x^5+82 x^4+109 x^3+105 x^2+5 x+81$
- $y^2=47 x^6+106 x^5+84 x^4+90 x^3+90 x^2+67 x+6$
- $y^2=81 x^6+97 x^5+6 x^4+27 x^3+56 x^2+43 x+50$
- and 45 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.257303429.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.z_od | $2$ | (not in LMFDB) |