-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10287, 'abvar_counts': [10287, 164458269, 2086899176079, 26588693445738021, 339457144303470658032, 4334521569984751692761541, 55347526283578541643489157863, 706732554960930072279125329704549, 9024267960701469442204807317552659151, 115230877630442093933055257019827872161024], 'abvar_counts_str': '10287 164458269 2086899176079 26588693445738021 339457144303470658032 4334521569984751692761541 55347526283578541643489157863 706732554960930072279125329704549 9024267960701469442204807317552659151 115230877630442093933055257019827872161024 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.219440650796249, 0.367525988332406], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 89, 'curve_counts': [89, 12879, 1446323, 163073435, 18424373794, 2081951017623, 235260551518543, 26584442014871539, 3004041936497335349, 339456738942756065214], 'curve_counts_str': '89 12879 1446323 163073435 18424373794 2081951017623 235260551518543 26584442014871539 3004041936497335349 339456738942756065214 ', 'curves': ['y^2=48*x^6+101*x^5+74*x^4+54*x^3+102*x^2+59*x+10', 'y^2=31*x^6+83*x^5+74*x^4+94*x^3+88*x^2+103*x+101', 'y^2=24*x^6+58*x^5+81*x^4+106*x^3+19*x^2+39*x+47', 'y^2=22*x^6+38*x^5+4*x^4+38*x^3+94*x^2+23*x+82', 'y^2=82*x^6+84*x^5+24*x^4+81*x^3+36*x^2+38*x+90', 'y^2=21*x^6+81*x^5+107*x^4+24*x^3+111*x^2+42*x+28', 'y^2=103*x^6+78*x^5+108*x^4+101*x^3+6*x^2+31*x+40', 'y^2=50*x^6+90*x^5+34*x^4+101*x^3+54*x^2+60*x+93', 'y^2=47*x^6+21*x^5+31*x^3+x^2+99*x+6', 'y^2=110*x^6+69*x^5+57*x^4+75*x^3+32*x^2+3*x+61', 'y^2=72*x^6+5*x^5+56*x^4+31*x^3+81*x^2+31*x+67', 'y^2=35*x^6+85*x^5+95*x^4+98*x^3+58*x^2+7*x+54', 'y^2=68*x^6+33*x^5+99*x^4+64*x^3+77*x^2+102*x+83', 'y^2=99*x^6+66*x^5+9*x^4+51*x^3+25*x^2+105*x+21', 'y^2=85*x^6+29*x^5+108*x^4+10*x^3+82*x^2+7*x+73', 'y^2=65*x^6+31*x^5+87*x^4+16*x^3+62*x^2+60*x+29', 'y^2=25*x^6+72*x^5+31*x^4+79*x^3+56*x^2+105*x+30', 'y^2=51*x^6+88*x^5+82*x^4+109*x^3+105*x^2+5*x+81', 'y^2=47*x^6+106*x^5+84*x^4+90*x^3+90*x^2+67*x+6', 'y^2=81*x^6+97*x^5+6*x^4+27*x^3+56*x^2+43*x+50', 'y^2=72*x^6+29*x^5+9*x^4+111*x^3+35*x^2+47*x+63', 'y^2=99*x^6+97*x^5+68*x^4+18*x^3+97*x^2+11', 'y^2=10*x^6+32*x^5+38*x^4+99*x^3+59*x^2+100*x+103', 'y^2=63*x^6+16*x^5+96*x^4+84*x^3+95*x^2+89*x+103', 'y^2=3*x^6+67*x^5+101*x^4+3*x^3+2*x^2+70*x+26', 'y^2=3*x^6+19*x^5+34*x^4+24*x^3+49*x^2+39*x+38', 'y^2=28*x^6+14*x^5+11*x^4+99*x^3+90*x^2+60*x+59', 'y^2=11*x^6+58*x^5+56*x^4+54*x^3+33*x^2+104*x+76', 'y^2=51*x^6+82*x^5+48*x^4+71*x^3+112*x^2+78*x+53', 'y^2=15*x^6+55*x^5+77*x^4+38*x^3+91*x^2+102*x+110', 'y^2=7*x^6+63*x^5+60*x^4+16*x^3+67*x^2+49*x+42', 'y^2=31*x^6+68*x^5+89*x^4+6*x^3+55*x^2+26*x+20', 'y^2=97*x^6+46*x^5+112*x^4+65*x^3+63*x^2+14*x+65', 'y^2=30*x^6+72*x^5+56*x^4+14*x^3+49*x^2+59*x+49', 'y^2=43*x^6+7*x^5+10*x^4+94*x^3+42*x^2+104*x+54', 'y^2=40*x^6+98*x^5+81*x^4+112*x^3+109*x^2+106*x+98', 'y^2=86*x^6+17*x^5+72*x^4+96*x^3+4*x^2+20*x+79', 'y^2=41*x^6+23*x^5+84*x^4+77*x^3+60*x^2+50*x+32', 'y^2=65*x^6+29*x^5+54*x^4+25*x^3+112*x^2+17*x+103', 'y^2=111*x^6+80*x^5+34*x^4+42*x^2+53*x+61', 'y^2=86*x^6+57*x^5+66*x^4+37*x^3+80*x^2+108*x+23', 'y^2=27*x^6+28*x^5+85*x^4+74*x^3+8*x^2+100*x+106', 'y^2=14*x^6+28*x^5+110*x^4+108*x^3+43*x^2+80*x+30', 'y^2=71*x^6+69*x^5+97*x^4+3*x^3+108*x^2+105*x+9', 'y^2=59*x^6+40*x^5+40*x^4+51*x^3+40*x^2+69*x+101', 'y^2=34*x^6+65*x^5+65*x^4+27*x^3+13*x^2+48*x+58', 'y^2=80*x^6+99*x^5+88*x^4+106*x^3+39*x^2+10*x+34', 'y^2=33*x^6+61*x^5+94*x^4+28*x^3+40*x^2+110*x+38', 'y^2=54*x^6+14*x^5+5*x^4+25*x^3+79*x^2+4*x+41', 'y^2=19*x^6+23*x^5+104*x^4+37*x^3+107*x^2+43*x+12', 'y^2=6*x^6+81*x^5+27*x^4+17*x^3+83*x^2+98*x+33', 'y^2=109*x^6+56*x^5+35*x^4+73*x^3+5*x^2+80*x+29', 'y^2=40*x^6+87*x^5+16*x^4+105*x^3+42*x^2+52*x+92', 'y^2=22*x^6+84*x^5+44*x^4+51*x^3+49*x^2+66*x+59', 'y^2=40*x^6+77*x^5+103*x^4+81*x^3+58*x^2+65*x+51', 'y^2=112*x^6+6*x^5+106*x^4+71*x^3+33*x^2+38*x+37', 'y^2=31*x^6+27*x^5+14*x^4+55*x^3+83*x^2+21*x+37', 'y^2=108*x^6+27*x^5+69*x^4+94*x^3+112*x^2+87*x+20', 'y^2=97*x^6+23*x^5+111*x^4+47*x^3+31*x^2+72*x+46', 'y^2=40*x^6+3*x^5+58*x^4+60*x^3+106*x^2+61*x+76', 'y^2=3*x^6+94*x^5+39*x^4+99*x^3+67*x^2+24*x+101', 'y^2=92*x^6+41*x^5+70*x^4+48*x^3+90*x^2+27*x+15', 'y^2=55*x^6+84*x^5+30*x^4+38*x^3+52*x^2+73*x+78', 'y^2=79*x^6+85*x^5+2*x^4+110*x^3+25*x^2+112*x+58', 'y^2=31*x^6+90*x^5+26*x^4+29*x^3+86*x^2+51*x+53'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 1, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.257303429.1'], 'geometric_splitting_field': '4.0.257303429.1', 'geometric_splitting_polynomials': [[4927, -257, 133, -1, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 65, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 65, 'label': '2.113.az_od', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.257303429.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -25, 367, -2825, 12769], 'poly_str': '1 -25 367 -2825 12769 ', 'primitive_models': [], 'q': 113, 'real_poly': [1, -25, 141], 'simple_distinct': ['2.113.az_od'], 'simple_factors': ['2.113.az_odA'], 'simple_multiplicities': [1], 'singular_primes': [], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.257303429.1', 'splitting_polynomials': [[4927, -257, 133, -1, 1]], 'twist_count': 2, 'twists': [['2.113.z_od', '2.12769.ef_bcbx', 2]], 'weak_equivalence_count': 1, 'zfv_index': 1, 'zfv_index_factorization': [], 'zfv_is_bass': True, 'zfv_is_maximal': True, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 69149, 'zfv_singular_count': 0, 'zfv_singular_primes': []}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.az_od', 'extension_degree': 1, 'extension_label': '2.113.az_od', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.257303429.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.az_od', 'galois_group': '4T3', 'places': [['60', '1', '0', '0'], ['40', '1', '0', '0'], ['3846/113', '547/113', '64/113', '7/113'], ['6897/113', '547/113', '64/113', '7/113']]}