Invariants
This isogeny class is simple and geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$10266$ |
$163906956$ |
$2084623856424$ |
$26585015920217856$ |
$339455935204903548186$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$89$ |
$12837$ |
$1444748$ |
$163050881$ |
$18424308169$ |
$2081953815138$ |
$235260601020793$ |
$26584442371654273$ |
$3004041937103018924$ |
$339456738940375667397$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 104 curves (of which all are hyperelliptic):
- $y^2=19 x^6+109 x^5+57 x^4+37 x^3+28 x^2+71 x+70$
- $y^2=105 x^6+61 x^5+56 x^4+82 x^3+40 x^2+45 x+77$
- $y^2=45 x^6+29 x^5+32 x^4+10 x^3+13 x^2+38 x+35$
- $y^2=101 x^6+23 x^5+65 x^4+12 x^3+78 x^2+110 x+24$
- $y^2=65 x^6+81 x^5+99 x^4+47 x^3+12 x^2+64 x+49$
- $y^2=109 x^6+86 x^5+112 x^4+38 x^3+3 x^2+65 x+107$
- $y^2=92 x^6+99 x^5+45 x^4+57 x^3+x^2+49 x+76$
- $y^2=86 x^6+69 x^5+15 x^4+17 x^3+52 x^2+71 x+75$
- $y^2=107 x^6+94 x^5+72 x^4+51 x^3+94 x^2+3 x+70$
- $y^2=50 x^6+22 x^5+37 x^4+26 x^3+39 x^2+16 x+4$
- $y^2=59 x^6+15 x^5+16 x^4+99 x^3+86 x^2+89 x+51$
- $y^2=87 x^6+98 x^5+89 x^4+45 x^3+71 x^2+4 x+81$
- $y^2=55 x^6+21 x^5+109 x^4+90 x^3+94 x^2+45 x+36$
- $y^2=21 x^6+108 x^5+80 x^4+35 x^3+107 x^2+28 x+56$
- $y^2=71 x^6+56 x^5+44 x^4+41 x^3+78 x^2+99 x+93$
- $y^2=42 x^6+111 x^5+16 x^4+75 x^3+5 x^2+81 x+34$
- $y^2=78 x^6+102 x^5+21 x^4+22 x^3+7 x^2+99 x+68$
- $y^2=107 x^6+72 x^5+85 x^4+13 x^3+84 x^2+36 x+76$
- $y^2=28 x^6+99 x^5+39 x^4+10 x^3+83 x^2+41 x+67$
- $y^2=97 x^6+53 x^5+103 x^4+11 x^3+89 x^2+81 x+92$
- and 84 more
- $y^2=50 x^6+57 x^5+97 x^4+36 x^3+55 x^2+76 x+41$
- $y^2=65 x^6+110 x^5+28 x^4+20 x^3+74 x^2+13 x+69$
- $y^2=79 x^6+29 x^5+84 x^4+81 x^3+64 x^2+2 x+46$
- $y^2=27 x^6+93 x^5+33 x^4+9 x^3+69 x^2+97 x+3$
- $y^2=8 x^6+103 x^5+8 x^4+18 x^3+96 x^2+25 x+76$
- $y^2=89 x^6+25 x^5+19 x^4+86 x^3+82 x^2+77 x+8$
- $y^2=76 x^6+17 x^5+92 x^4+80 x^3+93 x^2+42 x+81$
- $y^2=44 x^6+85 x^5+61 x^4+108 x^3+19 x^2+29 x+95$
- $y^2=112 x^6+7 x^5+84 x^4+71 x^3+104 x^2+96 x+79$
- $y^2=70 x^6+107 x^5+33 x^4+38 x^3+51 x^2+63 x+66$
- $y^2=80 x^6+31 x^5+24 x^4+32 x^3+30 x^2+77 x+60$
- $y^2=40 x^6+48 x^5+45 x^4+42 x^3+66 x^2+75 x+4$
- $y^2=60 x^6+76 x^5+53 x^4+101 x^3+48 x^2+26 x+107$
- $y^2=21 x^6+74 x^5+27 x^4+2 x^3+42 x^2+63 x+46$
- $y^2=28 x^6+98 x^5+96 x^4+3 x^3+91 x^2+16 x+74$
- $y^2=43 x^6+103 x^5+14 x^4+105 x^3+23 x^2+86 x+11$
- $y^2=71 x^6+30 x^5+20 x^4+64 x^3+46 x^2+37 x+9$
- $y^2=98 x^6+68 x^5+4 x^4+49 x^3+24 x^2+106 x+107$
- $y^2=32 x^6+19 x^5+76 x^4+73 x^3+91 x^2+33$
- $y^2=73 x^6+96 x^5+51 x^4+85 x^3+27 x^2+31 x+59$
- $y^2=110 x^6+70 x^5+98 x^4+35 x^3+28 x^2+76 x+97$
- $y^2=24 x^6+103 x^5+94 x^4+89 x^3+46 x^2+91 x+49$
- $y^2=108 x^6+66 x^5+53 x^4+38 x^3+94 x^2+11 x+80$
- $y^2=44 x^6+53 x^5+71 x^4+79 x^3+82 x^2+x+7$
- $y^2=53 x^6+7 x^5+45 x^4+28 x^3+83 x^2+23 x+41$
- $y^2=32 x^6+57 x^5+41 x^4+92 x^3+107 x^2+14 x+23$
- $y^2=71 x^6+91 x^5+3 x^4+50 x^3+98 x^2+22 x+48$
- $y^2=80 x^6+72 x^5+41 x^4+57 x^3+23 x^2+62 x+29$
- $y^2=30 x^6+98 x^5+30 x^4+106 x^3+25 x^2+26 x+55$
- $y^2=101 x^6+3 x^5+87 x^4+21 x^3+28 x^2+110 x+39$
- $y^2=69 x^6+5 x^5+49 x^4+28 x^3+24 x^2+10 x+107$
- $y^2=21 x^6+24 x^5+12 x^4+48 x^3+72 x^2+52 x+55$
- $y^2=8 x^6+101 x^5+66 x^4+13 x^3+40 x^2+16 x+50$
- $y^2=94 x^6+61 x^5+61 x^4+92 x^3+24 x^2+89 x+62$
- $y^2=97 x^6+51 x^5+42 x^4+93 x^3+30 x^2+112 x+72$
- $y^2=96 x^6+5 x^5+61 x^4+107 x^3+60 x^2+75 x+102$
- $y^2=92 x^6+104 x^5+85 x^4+65 x^3+109 x^2+93 x+52$
- $y^2=47 x^6+88 x^5+5 x^4+x^3+35 x^2+7 x+45$
- $y^2=33 x^6+96 x^5+38 x^4+102 x^3+83 x^2+110 x+62$
- $y^2=68 x^6+7 x^5+106 x^4+30 x^3+105 x^2+20 x+39$
- $y^2=30 x^6+15 x^5+65 x^4+102 x^3+90 x^2+17 x+112$
- $y^2=45 x^6+18 x^5+58 x^4+107 x^3+104 x^2+17 x+67$
- $y^2=45 x^6+88 x^5+52 x^4+87 x^3+37 x^2+76 x+29$
- $y^2=73 x^6+108 x^5+81 x^4+100 x^3+61 x^2+40 x+15$
- $y^2=71 x^6+46 x^5+45 x^4+62 x^3+77 x^2+3 x+52$
- $y^2=57 x^6+72 x^5+48 x^4+65 x^3+41 x^2+86 x+49$
- $y^2=96 x^6+40 x^5+40 x^4+21 x^3+79 x^2+92 x+55$
- $y^2=18 x^6+8 x^5+38 x^4+47 x^3+59 x^2+14 x$
- $y^2=90 x^6+93 x^5+96 x^4+14 x^3+97 x^2+73 x+47$
- $y^2=71 x^6+20 x^5+74 x^4+49 x^3+57 x^2+108 x+51$
- $y^2=110 x^6+43 x^5+78 x^4+51 x^3+18 x^2+80 x+105$
- $y^2=76 x^6+103 x^5+48 x^4+86 x^3+33 x^2+19 x+39$
- $y^2=43 x^6+85 x^5+14 x^4+41 x^3+89 x^2+9 x+56$
- $y^2=68 x^6+41 x^5+69 x^4+82 x^3+52 x^2+87 x+105$
- $y^2=74 x^6+49 x^5+110 x^4+12 x^3+83 x^2+9 x+72$
- $y^2=20 x^6+11 x^5+48 x^4+73 x^3+19 x^2+97 x+88$
- $y^2=45 x^6+43 x^5+11 x^4+12 x^3+54 x^2+68 x+109$
- $y^2=70 x^6+36 x^5+85 x^4+71 x^3+7 x^2+108 x+65$
- $y^2=2 x^6+83 x^5+58 x^4+109 x^3+110 x^2+75 x+78$
- $y^2=48 x^6+34 x^5+8 x^4+5 x^3+62 x^2+91 x+96$
- $y^2=45 x^6+74 x^5+7 x^4+44 x^3+36 x^2+71 x+77$
- $y^2=37 x^6+12 x^5+109 x^4+33 x^3+32 x^2+25 x+64$
- $y^2=61 x^6+103 x^5+6 x^4+94 x^3+2 x^2+93 x+76$
- $y^2=110 x^6+84 x^5+22 x^4+30 x^3+35 x^2+97 x+32$
- $y^2=19 x^6+37 x^5+31 x^4+87 x^3+50 x^2+77 x+58$
- $y^2=33 x^6+94 x^5+20 x^4+94 x^3+57 x^2+10 x+97$
- $y^2=56 x^6+39 x^5+86 x^4+77 x^3+20 x^2+38 x+99$
- $y^2=17 x^6+21 x^5+36 x^4+33 x^3+70 x^2+24 x+80$
- $y^2=105 x^6+14 x^5+64 x^4+73 x^3+57 x^2+24 x+91$
- $y^2=59 x^6+87 x^5+59 x^4+73 x^3+50 x^2+71 x+92$
- $y^2=46 x^6+74 x^5+105 x^4+16 x^3+65 x^2+5 x+47$
- $y^2=38 x^6+28 x^5+39 x^4+23 x^3+55 x^2+107 x+64$
- $y^2=80 x^6+21 x^5+x^4+31 x^3+31 x^2+95 x+107$
- $y^2=28 x^6+85 x^5+101 x^4+83 x^3+4 x^2+48 x+73$
- $y^2=4 x^6+104 x^5+5 x^4+75 x^3+99 x^2+80 x+76$
- $y^2=19 x^6+95 x^5+66 x^4+3 x^3+34 x^2+11 x+66$
- $y^2=37 x^6+13 x^5+15 x^4+77 x^3+108 x^2+26 x+2$
- $y^2=77 x^6+67 x^5+99 x^4+56 x^3+81 x^2+48 x+48$
- $y^2=95 x^6+78 x^5+64 x^4+9 x^3+75 x^2+102 x+73$
- $y^2=20 x^6+81 x^5+18 x^4+110 x^3+21 x^2+28 x+14$
- $y^2=22 x^6+24 x^5+84 x^4+99 x^3+55 x^2+23 x+98$
- $y^2=6 x^6+x^5+93 x^4+76 x^3+97 x^2+65 x+110$
- $y^2=83 x^6+52 x^5+112 x^4+33 x^3+110 x^2+12 x+29$
- $y^2=86 x^6+78 x^5+43 x^4+97 x^3+61 x^2+56 x+24$
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
2.113.z_ni | $2$ | (not in LMFDB) |