# Stored data for abelian variety isogeny class 2.113.az_ni, downloaded from the LMFDB on 05 October 2025. {"abvar_count": 10266, "abvar_counts": [10266, 163906956, 2084623856424, 26585015920217856, 339455935204903548186, 4334527394277279802085376, 55347537929505730555892356794, 706732564445800068447472158489600, 9024267962520968309069375021160016296, 115230877629634051852563712023061534819596], "abvar_counts_str": "10266 163906956 2084623856424 26585015920217856 339455935204903548186 4334527394277279802085376 55347537929505730555892356794 706732564445800068447472158489600 9024267962520968309069375021160016296 115230877629634051852563712023061534819596 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.163377929515954, 0.40142506389143], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 89, "curve_counts": [89, 12837, 1444748, 163050881, 18424308169, 2081953815138, 235260601020793, 26584442371654273, 3004041937103018924, 339456738940375667397], "curve_counts_str": "89 12837 1444748 163050881 18424308169 2081953815138 235260601020793 26584442371654273 3004041937103018924 339456738940375667397 ", "curves": ["y^2=19*x^6+109*x^5+57*x^4+37*x^3+28*x^2+71*x+70", "y^2=105*x^6+61*x^5+56*x^4+82*x^3+40*x^2+45*x+77", "y^2=45*x^6+29*x^5+32*x^4+10*x^3+13*x^2+38*x+35", "y^2=101*x^6+23*x^5+65*x^4+12*x^3+78*x^2+110*x+24", "y^2=65*x^6+81*x^5+99*x^4+47*x^3+12*x^2+64*x+49", "y^2=109*x^6+86*x^5+112*x^4+38*x^3+3*x^2+65*x+107", "y^2=92*x^6+99*x^5+45*x^4+57*x^3+x^2+49*x+76", "y^2=86*x^6+69*x^5+15*x^4+17*x^3+52*x^2+71*x+75", "y^2=107*x^6+94*x^5+72*x^4+51*x^3+94*x^2+3*x+70", "y^2=50*x^6+22*x^5+37*x^4+26*x^3+39*x^2+16*x+4", "y^2=59*x^6+15*x^5+16*x^4+99*x^3+86*x^2+89*x+51", "y^2=87*x^6+98*x^5+89*x^4+45*x^3+71*x^2+4*x+81", "y^2=55*x^6+21*x^5+109*x^4+90*x^3+94*x^2+45*x+36", "y^2=21*x^6+108*x^5+80*x^4+35*x^3+107*x^2+28*x+56", "y^2=71*x^6+56*x^5+44*x^4+41*x^3+78*x^2+99*x+93", "y^2=42*x^6+111*x^5+16*x^4+75*x^3+5*x^2+81*x+34", "y^2=78*x^6+102*x^5+21*x^4+22*x^3+7*x^2+99*x+68", "y^2=107*x^6+72*x^5+85*x^4+13*x^3+84*x^2+36*x+76", "y^2=28*x^6+99*x^5+39*x^4+10*x^3+83*x^2+41*x+67", "y^2=97*x^6+53*x^5+103*x^4+11*x^3+89*x^2+81*x+92", "y^2=50*x^6+57*x^5+97*x^4+36*x^3+55*x^2+76*x+41", "y^2=65*x^6+110*x^5+28*x^4+20*x^3+74*x^2+13*x+69", "y^2=79*x^6+29*x^5+84*x^4+81*x^3+64*x^2+2*x+46", "y^2=27*x^6+93*x^5+33*x^4+9*x^3+69*x^2+97*x+3", "y^2=8*x^6+103*x^5+8*x^4+18*x^3+96*x^2+25*x+76", "y^2=89*x^6+25*x^5+19*x^4+86*x^3+82*x^2+77*x+8", "y^2=76*x^6+17*x^5+92*x^4+80*x^3+93*x^2+42*x+81", "y^2=44*x^6+85*x^5+61*x^4+108*x^3+19*x^2+29*x+95", "y^2=112*x^6+7*x^5+84*x^4+71*x^3+104*x^2+96*x+79", "y^2=70*x^6+107*x^5+33*x^4+38*x^3+51*x^2+63*x+66", "y^2=80*x^6+31*x^5+24*x^4+32*x^3+30*x^2+77*x+60", "y^2=40*x^6+48*x^5+45*x^4+42*x^3+66*x^2+75*x+4", "y^2=60*x^6+76*x^5+53*x^4+101*x^3+48*x^2+26*x+107", "y^2=21*x^6+74*x^5+27*x^4+2*x^3+42*x^2+63*x+46", "y^2=28*x^6+98*x^5+96*x^4+3*x^3+91*x^2+16*x+74", "y^2=43*x^6+103*x^5+14*x^4+105*x^3+23*x^2+86*x+11", "y^2=71*x^6+30*x^5+20*x^4+64*x^3+46*x^2+37*x+9", "y^2=98*x^6+68*x^5+4*x^4+49*x^3+24*x^2+106*x+107", "y^2=32*x^6+19*x^5+76*x^4+73*x^3+91*x^2+33", "y^2=73*x^6+96*x^5+51*x^4+85*x^3+27*x^2+31*x+59", "y^2=110*x^6+70*x^5+98*x^4+35*x^3+28*x^2+76*x+97", "y^2=24*x^6+103*x^5+94*x^4+89*x^3+46*x^2+91*x+49", "y^2=108*x^6+66*x^5+53*x^4+38*x^3+94*x^2+11*x+80", "y^2=44*x^6+53*x^5+71*x^4+79*x^3+82*x^2+x+7", "y^2=53*x^6+7*x^5+45*x^4+28*x^3+83*x^2+23*x+41", "y^2=32*x^6+57*x^5+41*x^4+92*x^3+107*x^2+14*x+23", "y^2=71*x^6+91*x^5+3*x^4+50*x^3+98*x^2+22*x+48", "y^2=80*x^6+72*x^5+41*x^4+57*x^3+23*x^2+62*x+29", "y^2=30*x^6+98*x^5+30*x^4+106*x^3+25*x^2+26*x+55", "y^2=101*x^6+3*x^5+87*x^4+21*x^3+28*x^2+110*x+39", "y^2=69*x^6+5*x^5+49*x^4+28*x^3+24*x^2+10*x+107", "y^2=21*x^6+24*x^5+12*x^4+48*x^3+72*x^2+52*x+55", "y^2=8*x^6+101*x^5+66*x^4+13*x^3+40*x^2+16*x+50", "y^2=94*x^6+61*x^5+61*x^4+92*x^3+24*x^2+89*x+62", "y^2=97*x^6+51*x^5+42*x^4+93*x^3+30*x^2+112*x+72", "y^2=96*x^6+5*x^5+61*x^4+107*x^3+60*x^2+75*x+102", "y^2=92*x^6+104*x^5+85*x^4+65*x^3+109*x^2+93*x+52", "y^2=47*x^6+88*x^5+5*x^4+x^3+35*x^2+7*x+45", "y^2=33*x^6+96*x^5+38*x^4+102*x^3+83*x^2+110*x+62", "y^2=68*x^6+7*x^5+106*x^4+30*x^3+105*x^2+20*x+39", "y^2=30*x^6+15*x^5+65*x^4+102*x^3+90*x^2+17*x+112", "y^2=45*x^6+18*x^5+58*x^4+107*x^3+104*x^2+17*x+67", "y^2=45*x^6+88*x^5+52*x^4+87*x^3+37*x^2+76*x+29", "y^2=73*x^6+108*x^5+81*x^4+100*x^3+61*x^2+40*x+15", "y^2=71*x^6+46*x^5+45*x^4+62*x^3+77*x^2+3*x+52", "y^2=57*x^6+72*x^5+48*x^4+65*x^3+41*x^2+86*x+49", "y^2=96*x^6+40*x^5+40*x^4+21*x^3+79*x^2+92*x+55", "y^2=18*x^6+8*x^5+38*x^4+47*x^3+59*x^2+14*x", "y^2=90*x^6+93*x^5+96*x^4+14*x^3+97*x^2+73*x+47", "y^2=71*x^6+20*x^5+74*x^4+49*x^3+57*x^2+108*x+51", "y^2=110*x^6+43*x^5+78*x^4+51*x^3+18*x^2+80*x+105", "y^2=76*x^6+103*x^5+48*x^4+86*x^3+33*x^2+19*x+39", "y^2=43*x^6+85*x^5+14*x^4+41*x^3+89*x^2+9*x+56", "y^2=68*x^6+41*x^5+69*x^4+82*x^3+52*x^2+87*x+105", "y^2=74*x^6+49*x^5+110*x^4+12*x^3+83*x^2+9*x+72", "y^2=20*x^6+11*x^5+48*x^4+73*x^3+19*x^2+97*x+88", "y^2=45*x^6+43*x^5+11*x^4+12*x^3+54*x^2+68*x+109", "y^2=70*x^6+36*x^5+85*x^4+71*x^3+7*x^2+108*x+65", "y^2=2*x^6+83*x^5+58*x^4+109*x^3+110*x^2+75*x+78", "y^2=48*x^6+34*x^5+8*x^4+5*x^3+62*x^2+91*x+96", "y^2=45*x^6+74*x^5+7*x^4+44*x^3+36*x^2+71*x+77", "y^2=37*x^6+12*x^5+109*x^4+33*x^3+32*x^2+25*x+64", "y^2=61*x^6+103*x^5+6*x^4+94*x^3+2*x^2+93*x+76", "y^2=110*x^6+84*x^5+22*x^4+30*x^3+35*x^2+97*x+32", "y^2=19*x^6+37*x^5+31*x^4+87*x^3+50*x^2+77*x+58", "y^2=33*x^6+94*x^5+20*x^4+94*x^3+57*x^2+10*x+97", "y^2=56*x^6+39*x^5+86*x^4+77*x^3+20*x^2+38*x+99", "y^2=17*x^6+21*x^5+36*x^4+33*x^3+70*x^2+24*x+80", "y^2=105*x^6+14*x^5+64*x^4+73*x^3+57*x^2+24*x+91", "y^2=59*x^6+87*x^5+59*x^4+73*x^3+50*x^2+71*x+92", "y^2=46*x^6+74*x^5+105*x^4+16*x^3+65*x^2+5*x+47", "y^2=38*x^6+28*x^5+39*x^4+23*x^3+55*x^2+107*x+64", "y^2=80*x^6+21*x^5+x^4+31*x^3+31*x^2+95*x+107", "y^2=28*x^6+85*x^5+101*x^4+83*x^3+4*x^2+48*x+73", "y^2=4*x^6+104*x^5+5*x^4+75*x^3+99*x^2+80*x+76", "y^2=19*x^6+95*x^5+66*x^4+3*x^3+34*x^2+11*x+66", "y^2=37*x^6+13*x^5+15*x^4+77*x^3+108*x^2+26*x+2", "y^2=77*x^6+67*x^5+99*x^4+56*x^3+81*x^2+48*x+48", "y^2=95*x^6+78*x^5+64*x^4+9*x^3+75*x^2+102*x+73", "y^2=20*x^6+81*x^5+18*x^4+110*x^3+21*x^2+28*x+14", "y^2=22*x^6+24*x^5+84*x^4+99*x^3+55*x^2+23*x+98", "y^2=6*x^6+x^5+93*x^4+76*x^3+97*x^2+65*x+110", "y^2=83*x^6+52*x^5+112*x^4+33*x^3+110*x^2+12*x+29", "y^2=86*x^6+78*x^5+43*x^4+97*x^3+61*x^2+56*x+24"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 1, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.939481100.1"], "geometric_splitting_field": "4.0.939481100.1", "geometric_splitting_polynomials": [[4171, -509, 112, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 104, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 104, "label": "2.113.az_ni", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.939481100.1"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -25, 346, -2825, 12769], "poly_str": "1 -25 346 -2825 12769 ", "primitive_models": [], "q": 113, "real_poly": [1, -25, 120], "simple_distinct": ["2.113.az_ni"], "simple_factors": ["2.113.az_niA"], "simple_multiplicities": [1], "singular_primes": [], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.939481100.1", "splitting_polynomials": [[4171, -509, 112, -1, 1]], "twist_count": 2, "twists": [["2.113.z_ni", "2.12769.cp_fya", 2]], "weak_equivalence_count": 1, "zfv_index": 1, "zfv_index_factorization": [], "zfv_is_bass": true, "zfv_is_maximal": true, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 44684, "zfv_singular_count": 0, "zfv_singular_primes": []}