Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 328 x^{2} - 2825 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.115943102359$, $\pm0.422357847843$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.287431256.1 |
Galois group: | $D_{4}$ |
Jacobians: | $120$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10248$ | $163435104$ | $2082674313216$ | $26581635110249856$ | $339453282142916474568$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12801$ | $1443398$ | $163030145$ | $18424164169$ | $2081953725822$ | $235260603893593$ | $26584442367873409$ | $3004041938606204774$ | $339456738996418192161$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=101 x^6+87 x^5+87 x^4+55 x^3+64 x^2+100 x+66$
- $y^2=20 x^6+23 x^5+63 x^4+x^3+21 x^2+104 x+112$
- $y^2=2 x^6+93 x^5+62 x^4+104 x^3+41 x^2+29 x+57$
- $y^2=47 x^6+86 x^5+89 x^4+15 x^3+73 x^2+81 x+3$
- $y^2=23 x^6+110 x^5+102 x^4+4 x^3+108 x^2+103 x+70$
- $y^2=67 x^6+x^5+38 x^4+38 x^3+106 x^2+16 x+47$
- $y^2=91 x^6+87 x^5+87 x^4+87 x^3+26 x^2+23 x+41$
- $y^2=28 x^6+78 x^5+29 x^4+25 x^3+85 x^2+67 x+33$
- $y^2=34 x^6+7 x^5+6 x^4+100 x^3+27 x^2+111 x+82$
- $y^2=42 x^6+59 x^5+14 x^4+16 x^3+102 x^2+73 x+10$
- $y^2=106 x^6+11 x^5+79 x^4+77 x^3+46 x^2+46 x+107$
- $y^2=27 x^6+34 x^5+8 x^4+26 x^3+32 x^2+86 x+8$
- $y^2=99 x^6+19 x^5+8 x^4+5 x^3+39 x^2+79 x+107$
- $y^2=75 x^6+97 x^5+86 x^4+46 x^3+2 x^2+76 x+27$
- $y^2=103 x^6+2 x^5+99 x^4+9 x^3+33 x^2+94 x+40$
- $y^2=82 x^6+74 x^5+16 x^4+12 x^3+19 x^2+49 x+13$
- $y^2=29 x^6+40 x^5+27 x^4+109 x^3+108 x^2+24 x+56$
- $y^2=16 x^6+71 x^5+101 x^4+13 x^3+50 x^2+87 x+93$
- $y^2=61 x^6+77 x^5+53 x^4+51 x^3+52 x^2+107 x+30$
- $y^2=96 x^6+64 x^5+97 x^4+95 x^3+48 x^2+57 x+34$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.287431256.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.z_mq | $2$ | (not in LMFDB) |