# Curves in abelian variety isogeny class 2.113.az_mq, downloaded from the LMFDB on 16 October 2025. y^2=101*x^6+87*x^5+87*x^4+55*x^3+64*x^2+100*x+66 y^2=20*x^6+23*x^5+63*x^4+x^3+21*x^2+104*x+112 y^2=2*x^6+93*x^5+62*x^4+104*x^3+41*x^2+29*x+57 y^2=47*x^6+86*x^5+89*x^4+15*x^3+73*x^2+81*x+3 y^2=23*x^6+110*x^5+102*x^4+4*x^3+108*x^2+103*x+70 y^2=67*x^6+x^5+38*x^4+38*x^3+106*x^2+16*x+47 y^2=91*x^6+87*x^5+87*x^4+87*x^3+26*x^2+23*x+41 y^2=28*x^6+78*x^5+29*x^4+25*x^3+85*x^2+67*x+33 y^2=34*x^6+7*x^5+6*x^4+100*x^3+27*x^2+111*x+82 y^2=42*x^6+59*x^5+14*x^4+16*x^3+102*x^2+73*x+10 y^2=106*x^6+11*x^5+79*x^4+77*x^3+46*x^2+46*x+107 y^2=27*x^6+34*x^5+8*x^4+26*x^3+32*x^2+86*x+8 y^2=99*x^6+19*x^5+8*x^4+5*x^3+39*x^2+79*x+107 y^2=75*x^6+97*x^5+86*x^4+46*x^3+2*x^2+76*x+27 y^2=103*x^6+2*x^5+99*x^4+9*x^3+33*x^2+94*x+40 y^2=82*x^6+74*x^5+16*x^4+12*x^3+19*x^2+49*x+13 y^2=29*x^6+40*x^5+27*x^4+109*x^3+108*x^2+24*x+56 y^2=16*x^6+71*x^5+101*x^4+13*x^3+50*x^2+87*x+93 y^2=61*x^6+77*x^5+53*x^4+51*x^3+52*x^2+107*x+30 y^2=96*x^6+64*x^5+97*x^4+95*x^3+48*x^2+57*x+34 y^2=44*x^6+54*x^5+39*x^4+91*x^3+69*x^2+48*x+25 y^2=12*x^6+70*x^5+18*x^4+61*x^3+14*x^2+82*x+72 y^2=84*x^6+38*x^5+15*x^4+91*x^3+94*x^2+46*x+65 y^2=21*x^6+59*x^5+92*x^4+18*x^3+59*x^2+5*x+96 y^2=23*x^6+61*x^5+88*x^4+8*x^3+69*x^2+102*x+72 y^2=13*x^6+32*x^5+x^4+63*x^3+86*x^2+72*x+94 y^2=56*x^6+65*x^5+48*x^4+45*x^3+44*x^2+23*x+26 y^2=59*x^6+46*x^5+99*x^4+26*x^3+79*x^2+59*x+11 y^2=20*x^6+7*x^5+105*x^4+109*x^3+101*x^2+14*x+93 y^2=111*x^6+26*x^5+105*x^4+59*x^3+73*x^2+108*x+60 y^2=82*x^6+35*x^5+63*x^4+20*x^3+42*x^2+35*x+49 y^2=104*x^6+95*x^5+18*x^4+7*x^3+40*x^2+105*x+87 y^2=76*x^6+88*x^5+15*x^4+34*x^3+83*x^2+83*x+89 y^2=73*x^6+108*x^5+111*x^4+65*x^3+37*x^2+26*x+71 y^2=109*x^6+70*x^5+36*x^4+83*x^3+9*x^2+84*x+99 y^2=102*x^6+67*x^5+96*x^4+110*x^3+21*x^2+45*x+98 y^2=14*x^6+49*x^5+34*x^4+77*x^3+48*x^2+17*x+50 y^2=11*x^6+100*x^5+69*x^4+105*x^3+90*x^2+101*x+46 y^2=84*x^5+104*x^4+79*x^3+57*x^2+32*x+99 y^2=84*x^6+103*x^5+38*x^4+22*x^3+22*x^2+54*x+32 y^2=35*x^6+102*x^5+36*x^4+56*x^3+53*x^2+32*x+45 y^2=92*x^6+39*x^5+36*x^4+28*x^3+52*x^2+82*x+91 y^2=98*x^6+100*x^5+33*x^4+x^3+74*x^2+59*x+76 y^2=79*x^6+25*x^5+x^4+15*x^3+46*x^2+5*x+74 y^2=67*x^6+30*x^5+23*x^4+67*x^3+109*x^2+106*x+41 y^2=3*x^6+6*x^5+12*x^4+65*x^3+44*x^2+112*x+32 y^2=107*x^6+36*x^5+88*x^4+76*x^3+46*x^2+19*x+3 y^2=38*x^6+26*x^5+34*x^4+65*x^3+26*x^2+5*x+17 y^2=86*x^6+38*x^5+49*x^4+74*x^3+71*x^2+87*x+86 y^2=92*x^6+2*x^5+81*x^4+3*x^3+32*x^2+74*x+4 y^2=64*x^6+19*x^5+13*x^4+5*x^3+47*x^2+78*x+110 y^2=111*x^6+45*x^5+99*x^4+17*x^3+55*x^2+10*x+8 y^2=80*x^6+100*x^5+60*x^4+79*x^3+88*x^2+25*x+12 y^2=28*x^6+100*x^5+24*x^4+92*x^3+52*x^2+110*x+19 y^2=74*x^6+9*x^5+98*x^4+18*x^3+83*x^2+90*x+24 y^2=71*x^6+77*x^5+31*x^4+21*x^3+11*x^2+77*x+45 y^2=75*x^6+2*x^5+99*x^4+68*x^3+31*x^2+95*x y^2=42*x^5+55*x^4+101*x^3+23*x^2+23*x+11 y^2=83*x^6+106*x^5+32*x^4+71*x^3+29*x^2+62*x+28 y^2=36*x^6+80*x^5+63*x^4+106*x^3+11*x^2+37*x+107 y^2=103*x^6+42*x^5+88*x^4+64*x^3+46*x^2+64*x+89 y^2=x^6+107*x^5+42*x^4+34*x^3+21*x^2+45*x+55 y^2=93*x^6+20*x^5+44*x^4+81*x^3+24*x^2+57*x+79 y^2=54*x^6+82*x^5+78*x^4+46*x^3+110*x^2+110*x+6 y^2=86*x^6+42*x^5+56*x^4+38*x^3+100*x^2+111*x+54 y^2=53*x^6+71*x^5+2*x^4+15*x^3+30*x^2+6*x+84 y^2=17*x^6+87*x^5+89*x^4+25*x^3+5*x^2+37*x+6 y^2=100*x^6+27*x^5+x^4+41*x^3+16*x^2+86*x+36 y^2=92*x^6+14*x^5+77*x^4+92*x^3+112*x^2+91*x+58 y^2=45*x^6+18*x^5+99*x^4+13*x^3+99*x^2+6*x+32 y^2=55*x^6+60*x^5+90*x^4+56*x^3+88*x^2+27*x+105 y^2=52*x^6+75*x^5+68*x^4+71*x^3+91*x^2+88*x+17 y^2=90*x^6+62*x^5+107*x^4+96*x^3+94*x^2+36*x+29 y^2=24*x^6+4*x^5+37*x^4+60*x^3+110*x^2+70*x+39 y^2=42*x^6+92*x^5+93*x^4+28*x^3+5*x^2+27*x+19 y^2=6*x^6+85*x^5+12*x^4+96*x^3+66*x^2+102*x+68 y^2=110*x^6+54*x^5+49*x^4+92*x^3+16*x^2+44*x+64 y^2=82*x^6+68*x^5+110*x^4+87*x^3+69*x^2+32*x+93 y^2=35*x^6+80*x^5+54*x^4+30*x^3+17*x^2+42*x+110 y^2=62*x^6+91*x^4+101*x^3+30*x^2+26*x+2 y^2=82*x^6+13*x^5+32*x^4+32*x^3+x^2+56*x+60 y^2=12*x^6+54*x^5+39*x^4+19*x^3+34*x^2+87*x+74 y^2=67*x^6+100*x^5+26*x^4+59*x^3+42*x^2+91*x+56 y^2=73*x^6+43*x^5+73*x^4+31*x^3+19*x^2+88*x+17 y^2=103*x^5+60*x^4+104*x^3+85*x^2+7*x+45 y^2=106*x^6+76*x^5+97*x^4+58*x^3+106*x^2+70*x+11 y^2=66*x^6+74*x^5+79*x^4+61*x^3+111*x^2+21*x+74 y^2=59*x^6+52*x^5+7*x^4+72*x^3+x^2+91*x+38 y^2=45*x^6+35*x^5+33*x^4+106*x^3+93*x^2+105*x+68 y^2=59*x^6+112*x^5+86*x^4+16*x^3+106*x^2+4*x+36 y^2=24*x^6+67*x^5+23*x^4+52*x^3+13*x^2+106*x+73 y^2=69*x^6+11*x^5+7*x^4+82*x^3+84*x^2+27*x+61 y^2=58*x^6+105*x^5+81*x^4+74*x^3+70*x^2+4*x+45 y^2=94*x^6+85*x^5+90*x^4+74*x^3+62*x^2+89*x+92 y^2=63*x^6+42*x^5+27*x^4+89*x^3+5*x^2+62*x y^2=34*x^6+79*x^5+42*x^4+52*x^3+91*x^2+31*x+29 y^2=87*x^6+47*x^5+72*x^4+37*x^3+22*x^2+38*x+72 y^2=27*x^6+60*x^5+33*x^4+10*x^3+27*x^2+4*x+19 y^2=4*x^6+30*x^5+64*x^4+24*x^3+106*x^2+103*x+104 y^2=32*x^6+19*x^5+78*x^4+26*x^3+69*x^2+40*x+26 y^2=98*x^6+67*x^5+43*x^4+112*x^3+99*x^2+9*x+95 y^2=35*x^6+77*x^5+27*x^4+10*x^3+27*x^2+80 y^2=35*x^6+90*x^5+44*x^4+53*x^3+97*x^2+64*x+90 y^2=109*x^6+26*x^5+5*x^4+110*x^3+85*x^2+34*x+67 y^2=110*x^6+61*x^5+97*x^4+30*x^3+59*x^2+103*x+35 y^2=47*x^6+7*x^5+95*x^4+106*x^3+13*x^2+x+19 y^2=21*x^6+85*x^5+47*x^4+15*x^3+11*x^2+59*x+45 y^2=13*x^6+88*x^5+83*x^4+73*x^3+57*x^2+68*x+90 y^2=78*x^6+106*x^5+84*x^4+85*x^3+8*x^2+52*x+75 y^2=107*x^6+104*x^5+92*x^4+111*x^3+43*x^2+95*x+106 y^2=83*x^6+4*x^5+85*x^4+100*x^3+40*x^2+74*x y^2=97*x^6+10*x^5+99*x^4+24*x^3+48*x+45 y^2=5*x^6+38*x^5+37*x^4+62*x^3+66*x^2+52*x+32 y^2=33*x^6+63*x^5+111*x^4+9*x^3+54*x^2+95*x+94 y^2=50*x^6+92*x^5+58*x^4+38*x^3+35*x^2+77*x+35 y^2=66*x^5+24*x^4+77*x^3+4*x^2+32*x+26 y^2=91*x^6+55*x^5+86*x^4+62*x^3+57*x^2+77*x y^2=3*x^6+7*x^5+84*x^4+104*x^3+3*x^2+4*x+54 y^2=80*x^6+37*x^5+25*x^4+97*x^3+84*x^2+11*x+32 y^2=90*x^6+109*x^5+73*x^4+96*x^3+14*x^2+106*x+11