Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 327 x^{2} - 2825 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.113069054797$, $\pm0.423400014177$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1138434869.1 |
Galois group: | $D_{4}$ |
Jacobians: | $56$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10247$ | $163408909$ | $2082566024279$ | $26581441098030341$ | $339453090993396117232$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12799$ | $1443323$ | $163028955$ | $18424153794$ | $2081953652023$ | $235260602849543$ | $26584442353763379$ | $3004041938574703349$ | $339456738998676343614$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=29 x^6+39 x^5+16 x^4+97 x^3+82 x^2+42 x+50$
- $y^2=25 x^6+106 x^5+110 x^4+41 x^3+14 x^2+98 x+79$
- $y^2=105 x^6+42 x^5+6 x^4+83 x^3+15 x^2+22 x+63$
- $y^2=10 x^6+67 x^5+6 x^4+44 x^3+72 x^2+26 x+36$
- $y^2=77 x^5+34 x^4+111 x^3+30 x^2+90 x+23$
- $y^2=80 x^6+77 x^5+x^4+82 x^3+12 x^2+59 x+108$
- $y^2=47 x^6+104 x^5+10 x^4+39 x^3+80 x^2+77 x+34$
- $y^2=65 x^6+45 x^5+89 x^4+56 x^3+89 x^2+x+62$
- $y^2=64 x^6+74 x^5+23 x^4+41 x^3+70 x^2+91 x+53$
- $y^2=12 x^6+47 x^5+72 x^4+15 x^3+85 x^2+98 x+78$
- $y^2=41 x^6+90 x^5+60 x^4+24 x^3+13 x^2+93 x+76$
- $y^2=62 x^6+100 x^5+70 x^4+45 x^3+41 x^2+3 x+19$
- $y^2=45 x^6+42 x^5+62 x^4+85 x^3+16 x^2+109 x+27$
- $y^2=51 x^6+66 x^5+90 x^4+12 x^3+70 x^2+109 x+94$
- $y^2=7 x^6+12 x^5+37 x^4+35 x^3+76 x^2+6 x+72$
- $y^2=82 x^6+30 x^5+41 x^4+3 x^3+3 x^2+44 x+47$
- $y^2=45 x^6+38 x^5+97 x^4+59 x^3+101 x^2+45 x+28$
- $y^2=21 x^6+98 x^5+28 x^4+45 x^3+91 x^2+105 x+43$
- $y^2=29 x^6+92 x^5+94 x^4+92 x^3+35 x^2+36 x+67$
- $y^2=4 x^6+92 x^5+26 x^4+26 x^3+3 x^2+62 x+80$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1138434869.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.z_mp | $2$ | (not in LMFDB) |