-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10247, 'abvar_counts': [10247, 163408909, 2082566024279, 26581441098030341, 339453090993396117232, 4334527054682635315009141, 55347538359738498856469156543, 706732563970180623386189884988069, 9024267966941970031699073687363639351, 115230877649424609280751031200885113709824], 'abvar_counts_str': '10247 163408909 2082566024279 26581441098030341 339453090993396117232 4334527054682635315009141 55347538359738498856469156543 706732563970180623386189884988069 9024267966941970031699073687363639351 115230877649424609280751031200885113709824 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.113069054796951, 0.423400014177484], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 89, 'curve_counts': [89, 12799, 1443323, 163028955, 18424153794, 2081953652023, 235260602849543, 26584442353763379, 3004041938574703349, 339456738998676343614], 'curve_counts_str': '89 12799 1443323 163028955 18424153794 2081953652023 235260602849543 26584442353763379 3004041938574703349 339456738998676343614 ', 'curves': ['y^2=29*x^6+39*x^5+16*x^4+97*x^3+82*x^2+42*x+50', 'y^2=25*x^6+106*x^5+110*x^4+41*x^3+14*x^2+98*x+79', 'y^2=105*x^6+42*x^5+6*x^4+83*x^3+15*x^2+22*x+63', 'y^2=10*x^6+67*x^5+6*x^4+44*x^3+72*x^2+26*x+36', 'y^2=77*x^5+34*x^4+111*x^3+30*x^2+90*x+23', 'y^2=80*x^6+77*x^5+x^4+82*x^3+12*x^2+59*x+108', 'y^2=47*x^6+104*x^5+10*x^4+39*x^3+80*x^2+77*x+34', 'y^2=65*x^6+45*x^5+89*x^4+56*x^3+89*x^2+x+62', 'y^2=64*x^6+74*x^5+23*x^4+41*x^3+70*x^2+91*x+53', 'y^2=12*x^6+47*x^5+72*x^4+15*x^3+85*x^2+98*x+78', 'y^2=41*x^6+90*x^5+60*x^4+24*x^3+13*x^2+93*x+76', 'y^2=62*x^6+100*x^5+70*x^4+45*x^3+41*x^2+3*x+19', 'y^2=45*x^6+42*x^5+62*x^4+85*x^3+16*x^2+109*x+27', 'y^2=51*x^6+66*x^5+90*x^4+12*x^3+70*x^2+109*x+94', 'y^2=7*x^6+12*x^5+37*x^4+35*x^3+76*x^2+6*x+72', 'y^2=82*x^6+30*x^5+41*x^4+3*x^3+3*x^2+44*x+47', 'y^2=45*x^6+38*x^5+97*x^4+59*x^3+101*x^2+45*x+28', 'y^2=21*x^6+98*x^5+28*x^4+45*x^3+91*x^2+105*x+43', 'y^2=29*x^6+92*x^5+94*x^4+92*x^3+35*x^2+36*x+67', 'y^2=4*x^6+92*x^5+26*x^4+26*x^3+3*x^2+62*x+80', 'y^2=76*x^6+75*x^5+107*x^4+50*x^3+55*x^2+63*x+42', 'y^2=95*x^6+83*x^5+43*x^4+60*x^3+46*x^2+47*x+30', 'y^2=22*x^6+22*x^5+76*x^4+63*x^3+3*x^2+78*x+2', 'y^2=19*x^6+14*x^5+89*x^4+64*x^3+47*x^2+30*x+39', 'y^2=65*x^6+74*x^5+83*x^4+51*x^3+57*x^2+102*x+85', 'y^2=46*x^6+105*x^5+107*x^4+26*x^3+89*x^2+27*x+46', 'y^2=83*x^6+16*x^5+67*x^4+41*x^3+17*x^2+110*x+55', 'y^2=106*x^6+2*x^5+106*x^4+103*x^3+14*x^2+10*x+91', 'y^2=49*x^6+33*x^5+4*x^4+34*x^3+52*x^2+51*x+26', 'y^2=61*x^6+75*x^5+89*x^4+99*x^3+102*x^2+19*x', 'y^2=9*x^6+65*x^5+84*x^4+29*x^3+95*x^2+8*x+86', 'y^2=110*x^6+22*x^5+82*x^4+42*x^3+7*x^2+101*x+65', 'y^2=89*x^6+8*x^5+52*x^4+6*x^3+53*x^2+81*x+51', 'y^2=23*x^6+60*x^5+29*x^4+97*x^3+4*x^2+37*x+78', 'y^2=22*x^6+65*x^5+11*x^4+20*x^3+46*x^2+23*x+94', 'y^2=50*x^6+27*x^5+68*x^4+97*x^3+66*x^2+5*x+79', 'y^2=66*x^6+48*x^5+18*x^4+85*x^3+49*x^2+69*x+92', 'y^2=52*x^6+62*x^5+71*x^4+97*x^3+61*x^2+79*x+79', 'y^2=79*x^6+112*x^4+67*x^3+63*x^2+83*x+89', 'y^2=2*x^6+87*x^5+102*x^4+48*x^3+47*x^2+25*x+69', 'y^2=50*x^6+88*x^5+32*x^4+105*x^3+29*x^2+91*x+83', 'y^2=7*x^6+75*x^5+99*x^4+96*x^3+24*x^2+51*x+93', 'y^2=70*x^6+19*x^5+16*x^4+72*x^3+60*x^2+80*x+83', 'y^2=53*x^6+5*x^5+48*x^4+15*x^3+12*x^2+84*x+44', 'y^2=38*x^6+77*x^5+84*x^4+47*x^3+24*x^2+52*x+56', 'y^2=17*x^6+67*x^5+40*x^4+109*x^3+2*x^2+12*x+78', 'y^2=60*x^6+2*x^5+109*x^4+16*x^3+58*x^2+89*x+107', 'y^2=23*x^6+95*x^5+69*x^4+78*x^3+71*x^2+25*x+15', 'y^2=74*x^6+44*x^5+33*x^4+74*x^3+100*x^2+58*x+95', 'y^2=15*x^6+48*x^5+26*x^4+112*x^3+64*x^2+32*x+71', 'y^2=89*x^6+97*x^5+33*x^4+59*x^3+44*x^2+x+100', 'y^2=90*x^6+13*x^5+75*x^4+50*x^3+74*x^2+65*x+95', 'y^2=83*x^6+36*x^5+55*x^4+69*x^3+84*x^2+5*x+42', 'y^2=78*x^6+15*x^5+43*x^4+94*x^3+12*x^2+59*x+105', 'y^2=87*x^6+73*x^5+10*x^4+69*x^3+15*x^2+101*x+73', 'y^2=95*x^6+107*x^5+47*x^4+52*x^3+34*x^2+40*x+93'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 1, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.1138434869.1'], 'geometric_splitting_field': '4.0.1138434869.1', 'geometric_splitting_polynomials': [[3487, -737, 93, -1, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 56, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 56, 'label': '2.113.az_mp', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.1138434869.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -25, 327, -2825, 12769], 'poly_str': '1 -25 327 -2825 12769 ', 'primitive_models': [], 'q': 113, 'real_poly': [1, -25, 101], 'simple_distinct': ['2.113.az_mp'], 'simple_factors': ['2.113.az_mpA'], 'simple_multiplicities': [1], 'singular_primes': [], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.1138434869.1', 'splitting_polynomials': [[3487, -737, 93, -1, 1]], 'twist_count': 2, 'twists': [['2.113.z_mp', '2.12769.bd_amzv', 2]], 'weak_equivalence_count': 1, 'zfv_index': 1, 'zfv_index_factorization': [], 'zfv_is_bass': True, 'zfv_is_maximal': True, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 23309, 'zfv_singular_count': 0, 'zfv_singular_primes': []}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.az_mp', 'extension_degree': 1, 'extension_label': '2.113.az_mp', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.1138434869.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.az_mp', 'galois_group': '4T3', 'places': [['11222/113', '135/113', '12762/113', '1/113'], ['6', '1', '0', '0']]}