Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 322 x^{2} - 2825 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0979274132770$, $\pm0.428463115496$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1034074124.1 |
Galois group: | $D_{4}$ |
Jacobians: | $50$ |
Isomorphism classes: | 50 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10242$ | $163277964$ | $2082024608904$ | $26580461263174656$ | $339452066155010346882$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12789$ | $1442948$ | $163022945$ | $18424098169$ | $2081953172898$ | $235260595602793$ | $26584442255971009$ | $3004041938094118724$ | $339456739005920244789$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 50 curves (of which all are hyperelliptic):
- $y^2=9 x^6+28 x^5+111 x^4+61 x^3+29 x^2+75 x+10$
- $y^2=14 x^6+59 x^5+70 x^4+12 x^3+66 x^2+101 x+37$
- $y^2=61 x^6+3 x^5+41 x^4+33 x^3+78 x^2+56 x+27$
- $y^2=71 x^6+34 x^5+82 x^4+50 x^3+18 x^2+x+86$
- $y^2=34 x^6+21 x^5+63 x^4+9 x^3+8 x^2+49 x+23$
- $y^2=87 x^5+5 x^4+59 x^3+26 x^2+48 x+74$
- $y^2=6 x^6+32 x^5+81 x^4+45 x^3+47 x^2+63 x+100$
- $y^2=37 x^6+107 x^5+14 x^4+110 x^3+84 x^2+78 x+43$
- $y^2=34 x^6+78 x^5+24 x^4+5 x^3+49 x^2+65 x+80$
- $y^2=69 x^6+15 x^5+10 x^4+69 x^3+86 x^2+76 x+75$
- $y^2=39 x^6+35 x^5+98 x^4+84 x^3+90 x^2+50 x+102$
- $y^2=45 x^6+77 x^5+74 x^4+50 x^3+101 x^2+3 x+89$
- $y^2=3 x^6+12 x^5+75 x^4+83 x^3+93 x^2+107 x+43$
- $y^2=20 x^6+89 x^5+101 x^4+80 x^3+41 x^2+82 x+92$
- $y^2=101 x^6+110 x^5+19 x^4+99 x^3+96 x^2+19 x+29$
- $y^2=81 x^6+25 x^5+68 x^4+13 x^3+x^2+15 x+37$
- $y^2=85 x^6+48 x^5+69 x^4+49 x^3+26 x^2+74 x+19$
- $y^2=62 x^6+56 x^5+42 x^3+66 x^2+43 x+41$
- $y^2=13 x^6+21 x^5+57 x^4+54 x^3+91 x^2+6 x+27$
- $y^2=71 x^6+66 x^5+26 x^4+90 x^3+74 x^2+73 x+60$
- and 30 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1034074124.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.z_mk | $2$ | (not in LMFDB) |