# Stored data for abelian variety isogeny class 2.113.az_mk, downloaded from the LMFDB on 09 October 2025. {"abvar_count": 10242, "abvar_counts": [10242, 163277964, 2082024608904, 26580461263174656, 339452066155010346882, 4334526057167440319702016, 55347536654863898751285942978, 706732561370425025375270971305984, 9024267965498273663316647695044995976, 115230877651883600351273514347538916854924], "abvar_counts_str": "10242 163277964 2082024608904 26580461263174656 339452066155010346882 4334526057167440319702016 55347536654863898751285942978 706732561370425025375270971305984 9024267965498273663316647695044995976 115230877651883600351273514347538916854924 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 0, "angle_rank": 2, "angles": [0.09792741327696, 0.428463115496322], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 89, "curve_counts": [89, 12789, 1442948, 163022945, 18424098169, 2081953172898, 235260595602793, 26584442255971009, 3004041938094118724, 339456739005920244789], "curve_counts_str": "89 12789 1442948 163022945 18424098169 2081953172898 235260595602793 26584442255971009 3004041938094118724 339456739005920244789 ", "curves": ["y^2=9*x^6+28*x^5+111*x^4+61*x^3+29*x^2+75*x+10", "y^2=14*x^6+59*x^5+70*x^4+12*x^3+66*x^2+101*x+37", "y^2=61*x^6+3*x^5+41*x^4+33*x^3+78*x^2+56*x+27", "y^2=71*x^6+34*x^5+82*x^4+50*x^3+18*x^2+x+86", "y^2=34*x^6+21*x^5+63*x^4+9*x^3+8*x^2+49*x+23", "y^2=87*x^5+5*x^4+59*x^3+26*x^2+48*x+74", "y^2=6*x^6+32*x^5+81*x^4+45*x^3+47*x^2+63*x+100", "y^2=37*x^6+107*x^5+14*x^4+110*x^3+84*x^2+78*x+43", "y^2=34*x^6+78*x^5+24*x^4+5*x^3+49*x^2+65*x+80", "y^2=69*x^6+15*x^5+10*x^4+69*x^3+86*x^2+76*x+75", "y^2=39*x^6+35*x^5+98*x^4+84*x^3+90*x^2+50*x+102", "y^2=45*x^6+77*x^5+74*x^4+50*x^3+101*x^2+3*x+89", "y^2=3*x^6+12*x^5+75*x^4+83*x^3+93*x^2+107*x+43", "y^2=20*x^6+89*x^5+101*x^4+80*x^3+41*x^2+82*x+92", "y^2=101*x^6+110*x^5+19*x^4+99*x^3+96*x^2+19*x+29", "y^2=81*x^6+25*x^5+68*x^4+13*x^3+x^2+15*x+37", "y^2=85*x^6+48*x^5+69*x^4+49*x^3+26*x^2+74*x+19", "y^2=62*x^6+56*x^5+42*x^3+66*x^2+43*x+41", "y^2=13*x^6+21*x^5+57*x^4+54*x^3+91*x^2+6*x+27", "y^2=71*x^6+66*x^5+26*x^4+90*x^3+74*x^2+73*x+60", "y^2=38*x^6+107*x^5+82*x^4+3*x^3+57*x^2+34*x+86", "y^2=54*x^6+95*x^5+48*x^4+46*x^3+79*x^2+32*x+43", "y^2=85*x^6+62*x^5+27*x^4+99*x^3+102*x^2+107*x+43", "y^2=86*x^6+35*x^5+40*x^4+47*x^3+95*x^2+29", "y^2=93*x^6+110*x^5+22*x^4+103*x^3+69*x^2+57*x+46", "y^2=82*x^6+105*x^5+52*x^4+83*x^3+10*x^2+92*x+36", "y^2=11*x^6+100*x^5+18*x^4+57*x^3+18*x^2+102*x+63", "y^2=104*x^6+96*x^5+4*x^4+9*x^3+16*x^2+38*x+1", "y^2=61*x^6+2*x^5+x^4+86*x^3+101*x^2+39*x+11", "y^2=78*x^6+73*x^5+73*x^4+39*x^3+67*x^2+62*x+87", "y^2=64*x^6+27*x^5+49*x^4+51*x^3+76*x^2+73*x+39", "y^2=57*x^6+54*x^5+111*x^4+42*x^3+6*x^2+64*x+52", "y^2=57*x^6+99*x^5+62*x^4+94*x^3+31*x^2+8*x+12", "y^2=93*x^6+111*x^5+109*x^4+58*x^3+77*x^2+101*x+37", "y^2=16*x^6+57*x^5+84*x^4+58*x^3+89*x^2+22*x+107", "y^2=60*x^6+111*x^5+58*x^4+109*x^3+22*x^2+56*x+24", "y^2=24*x^6+34*x^5+4*x^4+88*x^3+4*x^2+5*x+47", "y^2=101*x^6+18*x^5+55*x^4+9*x^3+107*x^2+65*x+80", "y^2=75*x^6+45*x^5+19*x^4+24*x^3+100*x^2+61*x+59", "y^2=55*x^6+109*x^5+26*x^4+28*x^3+91*x^2+41", "y^2=51*x^6+105*x^5+61*x^4+99*x^3+97*x^2+81*x+5", "y^2=62*x^6+93*x^5+59*x^4+43*x^3+61*x^2+92*x+60", "y^2=89*x^6+43*x^5+29*x^4+19*x^3+89*x^2+109*x+3", "y^2=103*x^6+10*x^5+12*x^4+78*x^3+62*x^2+35*x+82", "y^2=75*x^6+60*x^5+34*x^4+75*x^3+19*x^2+81*x+55", "y^2=16*x^6+83*x^5+91*x^4+82*x^3+50*x^2+94*x+39", "y^2=33*x^6+48*x^5+25*x^4+69*x^3+32*x^2+27*x+7", "y^2=46*x^6+41*x^5+19*x^3+4*x^2+5*x+17", "y^2=105*x^6+75*x^5+28*x^4+59*x^3+12*x^2+77*x+60", "y^2=40*x^6+26*x^5+32*x^4+96*x^3+82*x^2+34*x+38"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 1, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.1034074124.1"], "geometric_splitting_field": "4.0.1034074124.1", "geometric_splitting_polynomials": [[3307, -797, 88, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 50, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 50, "label": "2.113.az_mk", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.1034074124.1"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 2, 1, 2], [1, 3, 1, 25]], "poly": [1, -25, 322, -2825, 12769], "poly_str": "1 -25 322 -2825 12769 ", "primitive_models": [], "principal_polarization_count": 50, "q": 113, "real_poly": [1, -25, 96], "simple_distinct": ["2.113.az_mk"], "simple_factors": ["2.113.az_mkA"], "simple_multiplicities": [1], "singular_primes": [], "size": 50, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.1034074124.1", "splitting_polynomials": [[3307, -797, 88, -1, 1]], "twist_count": 2, "twists": [["2.113.z_mk", "2.12769.t_aruq", 2]], "weak_equivalence_count": 1, "zfv_index": 1, "zfv_index_factorization": [], "zfv_is_bass": true, "zfv_is_maximal": true, "zfv_pic_size": 50, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 17804, "zfv_singular_count": 0, "zfv_singular_primes": []}