Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 25 x + 319 x^{2} - 2825 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0880001091230$, $\pm0.431391961880$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.929730725.1 |
Galois group: | $D_{4}$ |
Jacobians: | $128$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10239$ | $163199421$ | $2081699782911$ | $26579865542974821$ | $339451395979215009264$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $89$ | $12783$ | $1442723$ | $163019291$ | $18424061794$ | $2081952796887$ | $235260589595743$ | $26584442173901683$ | $3004041937503549749$ | $339456739006148223678$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 128 curves (of which all are hyperelliptic):
- $y^2=81 x^6+35 x^5+35 x^4+107 x^3+82 x^2+57 x+49$
- $y^2=7 x^6+6 x^5+47 x^4+12 x^3+99 x^2+7 x+82$
- $y^2=27 x^6+107 x^5+95 x^4+64 x^3+27 x^2+28 x+34$
- $y^2=6 x^6+26 x^5+69 x^4+75 x^3+107 x^2+111 x+73$
- $y^2=108 x^6+46 x^5+106 x^3+59 x^2+60 x+6$
- $y^2=106 x^6+50 x^5+51 x^4+46 x^3+97 x^2+110 x+88$
- $y^2=17 x^6+33 x^5+6 x^4+89 x^3+82 x^2+35 x+64$
- $y^2=59 x^6+28 x^5+106 x^4+39 x^3+29 x^2+97 x+76$
- $y^2=15 x^6+23 x^5+96 x^4+109 x^3+28 x^2+86 x+36$
- $y^2=77 x^6+52 x^5+109 x^4+12 x^3+4 x^2+86 x+69$
- $y^2=97 x^6+21 x^5+27 x^4+86 x^3+95 x^2+27 x+4$
- $y^2=35 x^6+4 x^5+104 x^4+72 x^3+44 x^2+44 x+34$
- $y^2=15 x^6+66 x^5+31 x^4+52 x^3+78 x^2+62 x+95$
- $y^2=36 x^6+3 x^5+40 x^4+38 x^3+86 x^2+82 x$
- $y^2=103 x^6+6 x^5+58 x^4+3 x^3+86 x^2+90 x+75$
- $y^2=x^6+25 x^5+92 x^4+10 x^3+40 x^2+60 x+52$
- $y^2=42 x^6+7 x^5+92 x^4+58 x^3+106 x^2+76 x+68$
- $y^2=54 x^6+70 x^5+111 x^4+30 x^3+107 x^2+54 x+92$
- $y^2=43 x^6+93 x^5+32 x^4+24 x^3+x^2+72 x+68$
- $y^2=46 x^6+89 x^5+45 x^4+27 x^3+5 x^2+7 x+75$
- and 108 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.929730725.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.z_mh | $2$ | (not in LMFDB) |