# Curves in abelian variety isogeny class 2.113.az_mh, downloaded from the LMFDB on 16 October 2025. y^2=81*x^6+35*x^5+35*x^4+107*x^3+82*x^2+57*x+49 y^2=7*x^6+6*x^5+47*x^4+12*x^3+99*x^2+7*x+82 y^2=27*x^6+107*x^5+95*x^4+64*x^3+27*x^2+28*x+34 y^2=6*x^6+26*x^5+69*x^4+75*x^3+107*x^2+111*x+73 y^2=108*x^6+46*x^5+106*x^3+59*x^2+60*x+6 y^2=106*x^6+50*x^5+51*x^4+46*x^3+97*x^2+110*x+88 y^2=17*x^6+33*x^5+6*x^4+89*x^3+82*x^2+35*x+64 y^2=59*x^6+28*x^5+106*x^4+39*x^3+29*x^2+97*x+76 y^2=15*x^6+23*x^5+96*x^4+109*x^3+28*x^2+86*x+36 y^2=77*x^6+52*x^5+109*x^4+12*x^3+4*x^2+86*x+69 y^2=97*x^6+21*x^5+27*x^4+86*x^3+95*x^2+27*x+4 y^2=35*x^6+4*x^5+104*x^4+72*x^3+44*x^2+44*x+34 y^2=15*x^6+66*x^5+31*x^4+52*x^3+78*x^2+62*x+95 y^2=36*x^6+3*x^5+40*x^4+38*x^3+86*x^2+82*x y^2=103*x^6+6*x^5+58*x^4+3*x^3+86*x^2+90*x+75 y^2=x^6+25*x^5+92*x^4+10*x^3+40*x^2+60*x+52 y^2=42*x^6+7*x^5+92*x^4+58*x^3+106*x^2+76*x+68 y^2=54*x^6+70*x^5+111*x^4+30*x^3+107*x^2+54*x+92 y^2=43*x^6+93*x^5+32*x^4+24*x^3+x^2+72*x+68 y^2=46*x^6+89*x^5+45*x^4+27*x^3+5*x^2+7*x+75 y^2=6*x^6+76*x^5+8*x^4+105*x^3+10*x^2+36*x+51 y^2=68*x^6+48*x^5+9*x^4+41*x^3+11*x^2+69*x+104 y^2=107*x^6+109*x^5+38*x^4+71*x^3+26*x^2+6*x+17 y^2=94*x^6+46*x^5+36*x^4+111*x^3+54*x^2+40*x+89 y^2=99*x^6+54*x^5+25*x^4+4*x^3+111*x^2+97*x+78 y^2=72*x^6+26*x^5+2*x^4+49*x^3+44*x^2+24*x+108 y^2=22*x^6+77*x^5+47*x^4+50*x^3+5*x^2+107*x+90 y^2=89*x^6+104*x^5+32*x^4+31*x^3+68*x^2+101*x+34 y^2=84*x^6+90*x^5+51*x^4+102*x^3+87*x^2+65*x+20 y^2=92*x^6+56*x^5+87*x^4+109*x^3+18*x^2+x+71 y^2=61*x^6+15*x^5+90*x^4+32*x^3+111*x^2+12*x y^2=44*x^6+35*x^5+105*x^4+28*x^3+23*x^2+34*x+35 y^2=78*x^6+x^5+86*x^4+52*x^3+30*x^2+14*x+63 y^2=74*x^6+50*x^5+102*x^4+78*x^3+29*x^2+77*x+51 y^2=55*x^6+27*x^5+106*x^4+85*x^3+65*x^2+7*x+53 y^2=104*x^6+105*x^5+42*x^4+13*x^3+9*x^2+107*x+98 y^2=102*x^6+42*x^5+16*x^4+109*x^3+79*x^2+5*x+105 y^2=96*x^6+13*x^5+66*x^4+50*x^3+60*x^2+106*x+63 y^2=41*x^6+90*x^5+33*x^4+5*x^3+47*x^2+96*x+55 y^2=99*x^6+33*x^5+72*x^4+13*x^3+38*x^2+73*x+21 y^2=58*x^6+102*x^5+11*x^4+111*x^3+60*x^2+52*x+42 y^2=10*x^6+46*x^5+5*x^4+44*x^3+71*x^2+21*x+17 y^2=18*x^6+11*x^5+23*x^4+61*x^3+15*x^2+51*x+73 y^2=48*x^6+72*x^5+36*x^4+76*x^3+111*x^2+25*x+51 y^2=92*x^6+78*x^5+111*x^4+19*x^3+71*x^2+7*x+15 y^2=34*x^6+28*x^5+34*x^4+87*x^3+36*x^2+87*x+100 y^2=45*x^6+32*x^5+32*x^4+43*x^3+90*x^2+53*x+3 y^2=33*x^6+22*x^5+82*x^4+41*x^3+95*x^2+75*x+80 y^2=30*x^6+21*x^5+14*x^4+32*x^3+16*x^2+73*x+19 y^2=15*x^6+19*x^5+60*x^4+37*x^3+35*x^2+26*x+70 y^2=44*x^6+81*x^5+68*x^4+90*x^3+111*x^2+9*x+33 y^2=62*x^6+75*x^5+11*x^4+36*x^3+112*x^2+43*x+27 y^2=39*x^6+9*x^4+x^3+26*x^2+44*x+91 y^2=52*x^6+22*x^5+10*x^4+98*x^3+80*x^2+44*x+103 y^2=20*x^6+66*x^5+33*x^4+14*x^3+3*x^2+6*x+22 y^2=107*x^6+25*x^5+40*x^4+92*x^3+20*x^2+2*x+91 y^2=19*x^6+18*x^5+100*x^4+2*x^3+19*x^2+80*x+104 y^2=4*x^6+69*x^5+46*x^4+27*x^3+97*x^2+22*x+32 y^2=48*x^6+109*x^5+45*x^4+57*x^3+101*x^2+35*x+32 y^2=79*x^6+15*x^5+104*x^4+84*x^3+75*x^2+99*x+9 y^2=29*x^6+82*x^5+97*x^4+59*x^3+94*x^2+108*x+17 y^2=104*x^6+110*x^5+84*x^4+73*x^3+58*x^2+41*x+98 y^2=70*x^6+96*x^5+62*x^4+103*x^3+53*x^2+72*x+68 y^2=17*x^6+51*x^5+98*x^4+103*x^3+53*x^2+21*x+13 y^2=82*x^6+63*x^5+18*x^4+66*x^3+97*x^2+58*x+79 y^2=75*x^6+60*x^5+101*x^4+101*x^3+55*x^2+88*x+107 y^2=111*x^6+38*x^5+35*x^4+103*x^3+94*x^2+23*x+27 y^2=98*x^6+86*x^5+72*x^4+79*x^3+35*x^2+106*x+55 y^2=106*x^6+70*x^5+91*x^4+17*x^3+17*x^2+67*x+101 y^2=80*x^6+38*x^5+90*x^4+103*x^3+10*x^2+38*x+26 y^2=50*x^6+28*x^5+53*x^4+86*x^3+97*x^2+21*x+57 y^2=3*x^6+104*x^5+81*x^4+34*x^3+16*x^2+100*x+108 y^2=73*x^6+101*x^5+5*x^4+39*x^3+81*x^2+72*x+101 y^2=109*x^6+7*x^5+54*x^4+34*x^3+70*x^2+29*x+23 y^2=11*x^6+26*x^5+89*x^4+42*x^3+67*x^2+79*x+83 y^2=59*x^6+51*x^5+53*x^4+66*x^3+31*x^2+26*x+80 y^2=29*x^6+32*x^5+72*x^4+46*x^3+48*x^2+78*x+100 y^2=49*x^6+111*x^5+104*x^4+87*x^3+40*x^2+99*x+101 y^2=61*x^6+52*x^5+61*x^4+103*x^3+18*x^2+32*x+6 y^2=12*x^6+110*x^5+95*x^4+96*x^3+50*x^2+110*x+19 y^2=33*x^6+99*x^5+29*x^4+38*x^3+67*x^2+55*x+13 y^2=48*x^6+x^5+95*x^4+4*x^3+67*x^2+93*x+18 y^2=43*x^6+50*x^5+94*x^4+26*x^3+49*x^2+100*x y^2=70*x^6+53*x^5+41*x^4+52*x^3+38*x^2+6*x+3 y^2=91*x^6+80*x^5+63*x^4+10*x^3+19*x^2+87*x+28 y^2=110*x^6+102*x^5+111*x^4+29*x^3+8*x^2+55*x+27 y^2=41*x^6+60*x^5+12*x^4+60*x^3+54*x^2+x+3 y^2=107*x^6+92*x^5+22*x^4+39*x^3+4*x^2+88*x+17 y^2=76*x^6+89*x^5+3*x^4+112*x^3+38*x^2+94*x+73 y^2=90*x^6+43*x^5+102*x^4+29*x^3+85*x^2+61*x+95 y^2=53*x^6+99*x^5+39*x^4+56*x^3+87*x^2+30*x+33 y^2=84*x^6+78*x^5+7*x^4+39*x^3+44*x^2+25*x+90 y^2=93*x^6+18*x^5+32*x^4+89*x^3+28*x^2+71*x+5 y^2=64*x^6+37*x^5+103*x^4+106*x^3+92*x^2+2*x+9 y^2=17*x^6+41*x^5+79*x^4+112*x^3+82*x^2+101*x+51 y^2=19*x^6+100*x^5+55*x^4+14*x^3+47*x^2+65*x+43 y^2=58*x^6+29*x^5+27*x^4+82*x^3+77*x^2+9*x+55 y^2=84*x^6+79*x^5+86*x^4+52*x^3+44*x^2+71*x+88 y^2=30*x^6+68*x^5+2*x^4+50*x^3+57*x^2+77*x+105 y^2=9*x^6+105*x^5+15*x^4+80*x^3+82*x^2+12*x+89 y^2=58*x^6+101*x^5+25*x^4+87*x^3+106*x^2+56*x+63 y^2=78*x^6+31*x^5+46*x^4+21*x^3+9*x^2+100*x+40 y^2=99*x^6+10*x^5+48*x^4+84*x^3+39*x^2+63*x+34 y^2=29*x^6+91*x^5+13*x^4+13*x^3+18*x^2+48*x+43 y^2=39*x^6+58*x^5+15*x^4+45*x^3+9*x^2+16*x+79 y^2=78*x^6+45*x^5+60*x^4+19*x^3+81*x^2+99*x+54 y^2=65*x^6+23*x^5+71*x^4+54*x^3+43*x^2+78*x+70 y^2=15*x^6+86*x^5+69*x^4+93*x^3+18*x^2+79*x+3 y^2=6*x^6+97*x^5+101*x^4+75*x^3+30*x^2+95*x+10 y^2=20*x^6+41*x^5+66*x^4+64*x^3+46*x^2+109*x+93 y^2=10*x^6+96*x^5+61*x^4+38*x^3+44*x^2+36*x+75 y^2=30*x^6+34*x^5+84*x^4+24*x^3+4*x^2+13*x+89 y^2=41*x^6+31*x^5+70*x^4+62*x^3+90*x^2+56*x+94 y^2=78*x^6+21*x^5+45*x^4+16*x^3+78*x^2+38*x+43 y^2=93*x^6+101*x^5+9*x^4+61*x^3+70*x^2+107*x+64 y^2=58*x^6+52*x^5+103*x^4+48*x^3+66*x^2+27*x+14 y^2=62*x^6+95*x^5+61*x^4+59*x^2+18*x+20 y^2=109*x^6+47*x^5+66*x^4+111*x^3+30*x^2+32*x+34 y^2=65*x^6+26*x^5+103*x^4+81*x^3+91*x^2+27*x+31 y^2=80*x^6+14*x^5+29*x^4+80*x^3+38*x^2+58*x+42 y^2=28*x^6+98*x^5+48*x^4+34*x^3+73*x^2+65*x+5 y^2=108*x^6+38*x^5+54*x^4+9*x^3+72*x^2+104*x+58 y^2=28*x^6+9*x^5+53*x^4+49*x^3+5*x^2+69*x+68 y^2=37*x^6+58*x^5+65*x^4+43*x^3+17*x^2+27*x+73 y^2=39*x^6+69*x^5+41*x^4+109*x^3+89*x^2+46*x+78 y^2=43*x^6+20*x^5+107*x^4+81*x^3+11*x^2+16*x+20 y^2=106*x^6+30*x^5+59*x^4+54*x^3+91*x^2+36*x+107 y^2=85*x^6+76*x^5+109*x^4+25*x^3+82*x^2+108*x+25