Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 295 x^{2} - 2712 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0758047657472$, $\pm0.449789228675$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1596816.2 |
Galois group: | $D_{4}$ |
Jacobians: | $120$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10329$ | $163208529$ | $2080913764644$ | $26578667096714601$ | $339451335112388513289$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $12784$ | $1442178$ | $163011940$ | $18424058490$ | $2081953031398$ | $235260578389626$ | $26584441936960324$ | $3004041936435325794$ | $339456739018684650064$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=74 x^6+13 x^5+82 x^4+109 x^3+59 x^2+46 x+3$
- $y^2=57 x^6+43 x^5+93 x^4+87 x^3+41 x^2+111 x+29$
- $y^2=2 x^6+65 x^5+89 x^4+105 x^3+98 x^2+64 x+39$
- $y^2=21 x^6+42 x^5+47 x^4+104 x^3+87 x^2+78 x+52$
- $y^2=33 x^6+5 x^5+32 x^4+17 x^3+65 x^2+80 x+70$
- $y^2=74 x^6+72 x^5+111 x^4+82 x^3+100 x^2+29 x+51$
- $y^2=17 x^6+29 x^5+10 x^4+60 x^3+43 x^2+110 x+5$
- $y^2=49 x^6+44 x^5+68 x^4+70 x^3+52 x^2+60 x+59$
- $y^2=83 x^6+51 x^5+47 x^4+61 x^3+78 x^2+10 x+37$
- $y^2=52 x^6+45 x^5+77 x^4+42 x^3+10 x^2+109 x+41$
- $y^2=109 x^6+32 x^5+61 x^4+73 x^3+43 x^2+54 x+21$
- $y^2=71 x^6+33 x^5+44 x^4+78 x^3+44 x^2+55 x+16$
- $y^2=35 x^6+27 x^5+50 x^4+90 x^3+62 x^2+10 x+68$
- $y^2=85 x^6+109 x^5+84 x^4+10 x^3+19 x^2+98 x+78$
- $y^2=35 x^6+27 x^5+84 x^4+67 x^3+112 x^2+97 x+31$
- $y^2=81 x^6+105 x^5+35 x^4+9 x^3+91 x^2+6 x+35$
- $y^2=77 x^6+75 x^5+109 x^4+91 x^3+93 x^2+31 x+96$
- $y^2=57 x^6+58 x^5+61 x^4+55 x^3+2 x^2+15 x+72$
- $y^2=25 x^6+47 x^5+70 x^4+29 x^3+94 x^2+90 x+46$
- $y^2=25 x^6+103 x^5+37 x^4+20 x^3+81 x^2+30 x+111$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.1596816.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.y_lj | $2$ | (not in LMFDB) |