# Stored data for abelian variety isogeny class 2.113.ay_lj, downloaded from the LMFDB on 11 October 2025. {"abvar_count": 10329, "abvar_counts": [10329, 163208529, 2080913764644, 26578667096714601, 339451335112388513289, 4334525762570079934016016, 55347532605284359634971051209, 706732552889703966020931909011529, 9024267960515190138796919342141176356, 115230877656216563741942015917023576876849], "abvar_counts_str": "10329 163208529 2080913764644 26578667096714601 339451335112388513289 4334525762570079934016016 55347532605284359634971051209 706732552889703966020931909011529 9024267960515190138796919342141176356 115230877656216563741942015917023576876849 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.0758047657472134, 0.449789228674901], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 90, "curve_counts": [90, 12784, 1442178, 163011940, 18424058490, 2081953031398, 235260578389626, 26584441936960324, 3004041936435325794, 339456739018684650064], "curve_counts_str": "90 12784 1442178 163011940 18424058490 2081953031398 235260578389626 26584441936960324 3004041936435325794 339456739018684650064 ", "curves": ["y^2=74*x^6+13*x^5+82*x^4+109*x^3+59*x^2+46*x+3", "y^2=57*x^6+43*x^5+93*x^4+87*x^3+41*x^2+111*x+29", "y^2=2*x^6+65*x^5+89*x^4+105*x^3+98*x^2+64*x+39", "y^2=21*x^6+42*x^5+47*x^4+104*x^3+87*x^2+78*x+52", "y^2=33*x^6+5*x^5+32*x^4+17*x^3+65*x^2+80*x+70", "y^2=74*x^6+72*x^5+111*x^4+82*x^3+100*x^2+29*x+51", "y^2=17*x^6+29*x^5+10*x^4+60*x^3+43*x^2+110*x+5", "y^2=49*x^6+44*x^5+68*x^4+70*x^3+52*x^2+60*x+59", "y^2=83*x^6+51*x^5+47*x^4+61*x^3+78*x^2+10*x+37", "y^2=52*x^6+45*x^5+77*x^4+42*x^3+10*x^2+109*x+41", "y^2=109*x^6+32*x^5+61*x^4+73*x^3+43*x^2+54*x+21", "y^2=71*x^6+33*x^5+44*x^4+78*x^3+44*x^2+55*x+16", "y^2=35*x^6+27*x^5+50*x^4+90*x^3+62*x^2+10*x+68", "y^2=85*x^6+109*x^5+84*x^4+10*x^3+19*x^2+98*x+78", "y^2=35*x^6+27*x^5+84*x^4+67*x^3+112*x^2+97*x+31", "y^2=81*x^6+105*x^5+35*x^4+9*x^3+91*x^2+6*x+35", "y^2=77*x^6+75*x^5+109*x^4+91*x^3+93*x^2+31*x+96", "y^2=57*x^6+58*x^5+61*x^4+55*x^3+2*x^2+15*x+72", "y^2=25*x^6+47*x^5+70*x^4+29*x^3+94*x^2+90*x+46", "y^2=25*x^6+103*x^5+37*x^4+20*x^3+81*x^2+30*x+111", "y^2=66*x^6+14*x^5+61*x^4+44*x^3+34*x^2+43*x+48", "y^2=63*x^6+23*x^5+52*x^4+9*x^3+77*x+7", "y^2=20*x^6+27*x^5+85*x^4+x^3+50*x^2+72*x+52", "y^2=96*x^6+81*x^5+105*x^4+28*x^3+24*x^2+62*x+23", "y^2=10*x^6+61*x^5+13*x^4+32*x^3+93*x^2+58*x+52", "y^2=84*x^6+64*x^5+57*x^4+72*x^3+75*x^2+76*x+89", "y^2=68*x^6+8*x^5+81*x^4+101*x^3+43*x^2+18*x+17", "y^2=35*x^6+99*x^5+68*x^4+61*x^3+6*x^2+43*x+37", "y^2=13*x^6+100*x^5+48*x^4+76*x^3+107*x^2+111*x+26", "y^2=7*x^6+78*x^5+65*x^4+45*x^3+63*x^2+17*x+101", "y^2=109*x^6+84*x^5+85*x^4+7*x^3+34*x^2+28*x+68", "y^2=56*x^6+74*x^5+78*x^4+86*x^3+59*x^2+81*x+70", "y^2=96*x^6+111*x^5+9*x^4+19*x^3+29*x^2+44*x+89", "y^2=46*x^6+19*x^5+72*x^4+7*x^3+66*x^2+111*x+104", "y^2=92*x^6+68*x^5+91*x^4+79*x^3+29*x^2+93*x+45", "y^2=109*x^6+76*x^5+16*x^4+12*x^3+76*x^2+61*x+90", "y^2=42*x^6+97*x^5+68*x^4+17*x^3+2*x^2+27*x+110", "y^2=10*x^6+85*x^5+71*x^4+77*x^3+89*x^2+21*x+74", "y^2=36*x^6+82*x^5+106*x^4+18*x^3+34*x^2+72*x+78", "y^2=17*x^6+71*x^5+62*x^4+65*x^3+39*x^2+64*x+15", "y^2=21*x^6+41*x^5+58*x^4+47*x^3+81*x^2+68*x+6", "y^2=80*x^6+94*x^5+36*x^4+79*x^3+56*x^2+10*x+66", "y^2=70*x^6+33*x^5+105*x^4+28*x^3+102*x^2+65*x+30", "y^2=67*x^6+59*x^5+58*x^4+10*x^3+24*x^2+4*x+47", "y^2=56*x^6+59*x^5+90*x^4+3*x^3+79*x^2+109*x+15", "y^2=91*x^6+27*x^5+16*x^4+110*x^3+84*x^2+75*x+82", "y^2=25*x^6+67*x^5+46*x^4+33*x^3+40*x^2+103*x+4", "y^2=31*x^6+66*x^5+101*x^4+76*x^3+33*x^2+18*x+89", "y^2=74*x^6+33*x^5+79*x^4+82*x^3+92*x^2+28*x+29", "y^2=10*x^6+34*x^5+93*x^4+19*x^3+28*x^2+65*x+53", "y^2=8*x^6+28*x^5+9*x^4+109*x^3+72*x^2+36*x+9", "y^2=97*x^6+19*x^5+100*x^4+18*x^3+99*x^2+31*x+87", "y^2=48*x^6+67*x^5+63*x^4+41*x^3+25*x^2+51*x+4", "y^2=107*x^6+112*x^5+82*x^4+94*x^3+36*x^2+63*x+43", "y^2=74*x^6+31*x^5+8*x^4+38*x^3+x^2+52*x+48", "y^2=31*x^6+70*x^5+95*x^4+77*x^3+45*x^2+88*x+69", "y^2=33*x^6+97*x^5+92*x^4+81*x^3+86*x^2+2*x+58", "y^2=22*x^6+9*x^5+64*x^4+110*x^3+27*x^2+23*x+49", "y^2=68*x^6+100*x^5+53*x^4+31*x^3+11*x^2+17*x+14", "y^2=40*x^6+18*x^5+x^4+2*x^3+105*x^2+70*x+63", "y^2=53*x^6+73*x^5+39*x^4+104*x^3+82*x^2+5*x+10", "y^2=86*x^6+75*x^5+48*x^4+33*x^3+85*x^2+87*x+21", "y^2=62*x^6+21*x^5+83*x^4+56*x^3+112*x^2+99*x+20", "y^2=38*x^6+76*x^5+40*x^4+3*x^3+51*x^2+19*x+3", "y^2=x^6+91*x^5+69*x^4+90*x^3+66*x^2+5*x+80", "y^2=70*x^6+92*x^5+23*x^4+10*x^3+35*x^2+5*x+16", "y^2=68*x^6+87*x^5+97*x^4+84*x^3+103*x^2+63*x+40", "y^2=94*x^6+93*x^5+18*x^4+3*x^3+8*x^2+12*x+43", "y^2=43*x^6+92*x^5+9*x^4+34*x^3+70*x^2+34*x+66", "y^2=100*x^6+111*x^5+38*x^4+76*x^3+30*x^2+33*x+101", "y^2=103*x^6+19*x^5+87*x^4+39*x^3+60*x^2+104*x+103", "y^2=34*x^6+57*x^5+9*x^4+63*x^3+26*x^2+91*x+62", "y^2=107*x^6+101*x^5+53*x^4+15*x^3+5*x^2+81*x+16", "y^2=46*x^6+62*x^5+70*x^4+104*x^3+15*x^2+15*x+31", "y^2=30*x^6+103*x^5+31*x^4+43*x^3+x^2+38*x+36", "y^2=34*x^6+93*x^5+110*x^4+37*x^3+89*x^2+49*x+111", "y^2=14*x^6+71*x^5+97*x^4+25*x^3+70*x^2+40*x+87", "y^2=38*x^6+71*x^5+68*x^4+69*x^3+84*x^2+20*x+15", "y^2=12*x^6+101*x^5+33*x^4+11*x^3+102*x^2+39*x+79", "y^2=32*x^6+87*x^5+93*x^4+21*x^3+44*x^2+6*x+3", "y^2=112*x^6+61*x^5+104*x^4+68*x^3+78*x^2+32*x+67", "y^2=67*x^6+5*x^5+71*x^4+9*x^3+34*x^2+82*x+90", "y^2=48*x^6+70*x^5+60*x^4+59*x^3+104*x^2+79*x+83", "y^2=107*x^6+52*x^5+109*x^4+17*x^3+39*x^2+75*x+97", "y^2=40*x^6+25*x^5+67*x^4+49*x^3+69*x^2+25*x+107", "y^2=95*x^6+41*x^5+108*x^4+72*x^3+104*x^2+47", "y^2=86*x^6+110*x^5+59*x^4+57*x^3+7*x^2+64*x+47", "y^2=79*x^6+89*x^5+79*x^4+14*x^3+31*x^2+12*x+51", "y^2=59*x^6+22*x^5+5*x^4+100*x^3+30*x^2+90*x+36", "y^2=108*x^6+109*x^5+68*x^4+24*x^3+89*x^2+6*x+73", "y^2=12*x^6+12*x^5+94*x^4+74*x^3+32*x^2+62*x+109", "y^2=105*x^6+29*x^5+22*x^4+69*x^3+106*x^2+34*x+22", "y^2=65*x^6+78*x^5+39*x^4+73*x^3+37*x^2+47*x+75", "y^2=91*x^6+11*x^5+4*x^3+28*x^2+34*x+65", "y^2=15*x^6+56*x^5+107*x^4+24*x^3+28*x^2+50*x+107", "y^2=5*x^6+31*x^5+83*x^4+72*x^3+79*x^2+7*x+7", "y^2=87*x^6+109*x^5+6*x^4+12*x^3+62*x^2+44*x+99", "y^2=22*x^6+9*x^5+109*x^4+40*x^3+7*x^2+x+19", "y^2=98*x^6+112*x^5+111*x^4+99*x^3+84*x^2+68*x+28", "y^2=95*x^6+59*x^5+66*x^4+19*x^3+4*x^2+110*x+78", "y^2=25*x^6+22*x^5+63*x^4+75*x^3+7*x^2+2*x+34", "y^2=89*x^6+96*x^5+34*x^4+62*x^3+38*x^2+35*x+56", "y^2=26*x^6+103*x^5+29*x^4+89*x^3+40*x^2+8*x+9", "y^2=107*x^6+50*x^5+105*x^4+51*x^3+81*x^2+31*x+107", "y^2=76*x^6+27*x^5+65*x^4+52*x^3+31*x^2+53*x+38", "y^2=84*x^6+88*x^5+95*x^4+15*x^3+76*x^2+102*x+66", "y^2=79*x^6+3*x^5+15*x^4+36*x^3+24*x^2+20*x+105", "y^2=75*x^6+46*x^5+58*x^4+75*x^3+78*x^2+33*x+109", "y^2=67*x^6+16*x^5+54*x^4+50*x^3+x^2+31*x+19", "y^2=56*x^6+36*x^5+25*x^4+84*x^3+106*x^2+4*x+68", "y^2=100*x^6+29*x^5+73*x^4+67*x^3+108*x^2+16*x+104", "y^2=75*x^6+61*x^5+96*x^4+47*x^3+31*x^2+29*x+111", "y^2=38*x^6+52*x^5+100*x^4+92*x^3+57*x^2+57*x+102", "y^2=65*x^6+38*x^5+74*x^4+32*x^3+53*x^2+x+108", "y^2=58*x^6+52*x^5+82*x^4+41*x^3+17*x^2+99*x+26", "y^2=27*x^6+57*x^5+22*x^4+83*x^3+26*x^2+79*x+82", "y^2=9*x^6+10*x^5+90*x^4+15*x^3+95*x^2+38*x+63", "y^2=15*x^6+89*x^5+103*x^4+74*x^3+70*x^2+40*x+88", "y^2=54*x^6+34*x^5+10*x^4+76*x^3+110*x^2+25*x+103", "y^2=108*x^6+7*x^5+85*x^4+13*x^3+46*x^2+54*x+9"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 2, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.1596816.2"], "geometric_splitting_field": "4.0.1596816.2", "geometric_splitting_polynomials": [[717, -96, 97, -2, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 120, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 120, "label": "2.113.ay_lj", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.1596816.2"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -24, 295, -2712, 12769], "poly_str": "1 -24 295 -2712 12769 ", "primitive_models": [], "q": 113, "real_poly": [1, -24, 69], "simple_distinct": ["2.113.ay_lj"], "simple_factors": ["2.113.ay_ljA"], "simple_multiplicities": [1], "singular_primes": ["5,44*F+19*V-443"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.1596816.2", "splitting_polynomials": [[717, -96, 97, -2, 1]], "twist_count": 2, "twists": [["2.113.y_lj", "2.12769.o_ababl", 2]], "weak_equivalence_count": 2, "zfv_index": 25, "zfv_index_factorization": [[5, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 5, "zfv_plus_index_factorization": [[5, 1]], "zfv_plus_norm": 11089, "zfv_singular_count": 2, "zfv_singular_primes": ["5,44*F+19*V-443"]}