Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 15 x + 113 x^{2} )( 1 - 8 x + 113 x^{2} )$ |
$1 - 23 x + 346 x^{2} - 2599 x^{3} + 12769 x^{4}$ | |
Frobenius angles: | $\pm0.250704227710$, $\pm0.377200205714$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $60$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10494$ | $165154572$ | $2087600131584$ | $26588490866175744$ | $339455552028792766974$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $12933$ | $1446808$ | $163072193$ | $18424287371$ | $2081949760098$ | $235260539116379$ | $26584441928616961$ | $3004041936707297464$ | $339456738965244145893$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=84 x^6+94 x^5+87 x^4+83 x^3+12 x^2+9 x+90$
- $y^2=6 x^6+29 x^4+7 x^3+51 x^2+35 x+50$
- $y^2=89 x^6+82 x^5+15 x^4+45 x^3+4 x^2+18 x+13$
- $y^2=74 x^6+67 x^5+69 x^4+27 x^3+96 x^2+77 x+31$
- $y^2=25 x^6+67 x^5+15 x^4+63 x^3+31 x^2+19 x+35$
- $y^2=42 x^6+80 x^5+11 x^4+16 x^3+25 x^2+41 x+49$
- $y^2=16 x^6+83 x^5+106 x^4+109 x^3+19 x^2+26 x+89$
- $y^2=55 x^6+60 x^5+82 x^4+82 x^3+42 x^2+30 x+38$
- $y^2=21 x^6+46 x^5+82 x^4+9 x^3+72 x^2+104 x+27$
- $y^2=104 x^6+90 x^5+101 x^4+31 x^3+13 x^2+103 x+106$
- $y^2=71 x^6+101 x^5+7 x^4+x^3+82 x^2+30 x+45$
- $y^2=62 x^6+5 x^5+3 x^4+90 x^3+27 x^2+7 x+108$
- $y^2=35 x^6+88 x^5+93 x^4+70 x^3+99 x^2+15 x+68$
- $y^2=67 x^6+60 x^5+75 x^4+76 x^3+88 x^2+50 x+48$
- $y^2=97 x^6+36 x^5+32 x^4+99 x^3+106 x^2+32 x+3$
- $y^2=66 x^6+112 x^5+99 x^4+108 x^3+101 x^2+38 x+3$
- $y^2=39 x^6+14 x^5+73 x^4+5 x^3+97 x^2+107 x+107$
- $y^2=102 x^6+98 x^5+6 x^4+36 x^3+x^2+77 x+75$
- $y^2=5 x^6+4 x^5+82 x^4+92 x^3+87 x^2+57 x+64$
- $y^2=51 x^6+96 x^5+38 x^4+78 x^3+77 x^2+52 x+19$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The isogeny class factors as 1.113.ap $\times$ 1.113.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.ah_ec | $2$ | (not in LMFDB) |
2.113.h_ec | $2$ | (not in LMFDB) |
2.113.x_ni | $2$ | (not in LMFDB) |