Properties

Label 2.113.ax_ni
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $( 1 - 15 x + 113 x^{2} )( 1 - 8 x + 113 x^{2} )$
  $1 - 23 x + 346 x^{2} - 2599 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.250704227710$, $\pm0.377200205714$
Angle rank:  $2$ (numerical)
Jacobians:  $60$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $10494$ $165154572$ $2087600131584$ $26588490866175744$ $339455552028792766974$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $91$ $12933$ $1446808$ $163072193$ $18424287371$ $2081949760098$ $235260539116379$ $26584441928616961$ $3004041936707297464$ $339456738965244145893$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The isogeny class factors as 1.113.ap $\times$ 1.113.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.ah_ec$2$(not in LMFDB)
2.113.h_ec$2$(not in LMFDB)
2.113.x_ni$2$(not in LMFDB)