# Stored data for abelian variety isogeny class 2.113.ax_ni, downloaded from the LMFDB on 08 October 2025. {"abvar_count": 10494, "abvar_counts": [10494, 165154572, 2087600131584, 26588490866175744, 339455552028792766974, 4334518951882075003170816, 55347523365838377712551303582, 706732552667900221304089732070400, 9024267961332204445154463452289179136, 115230877638075824465937960786536198931852], "abvar_counts_str": "10494 165154572 2087600131584 26588490866175744 339455552028792766974 4334518951882075003170816 55347523365838377712551303582 706732552667900221304089732070400 9024267961332204445154463452289179136 115230877638075824465937960786536198931852 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.250704227709897, 0.377200205713844], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 91, "curve_counts": [91, 12933, 1446808, 163072193, 18424287371, 2081949760098, 235260539116379, 26584441928616961, 3004041936707297464, 339456738965244145893], "curve_counts_str": "91 12933 1446808 163072193 18424287371 2081949760098 235260539116379 26584441928616961 3004041936707297464 339456738965244145893 ", "curves": ["y^2=84*x^6+94*x^5+87*x^4+83*x^3+12*x^2+9*x+90", "y^2=6*x^6+29*x^4+7*x^3+51*x^2+35*x+50", "y^2=89*x^6+82*x^5+15*x^4+45*x^3+4*x^2+18*x+13", "y^2=74*x^6+67*x^5+69*x^4+27*x^3+96*x^2+77*x+31", "y^2=25*x^6+67*x^5+15*x^4+63*x^3+31*x^2+19*x+35", "y^2=42*x^6+80*x^5+11*x^4+16*x^3+25*x^2+41*x+49", "y^2=16*x^6+83*x^5+106*x^4+109*x^3+19*x^2+26*x+89", "y^2=55*x^6+60*x^5+82*x^4+82*x^3+42*x^2+30*x+38", "y^2=21*x^6+46*x^5+82*x^4+9*x^3+72*x^2+104*x+27", "y^2=104*x^6+90*x^5+101*x^4+31*x^3+13*x^2+103*x+106", "y^2=71*x^6+101*x^5+7*x^4+x^3+82*x^2+30*x+45", "y^2=62*x^6+5*x^5+3*x^4+90*x^3+27*x^2+7*x+108", "y^2=35*x^6+88*x^5+93*x^4+70*x^3+99*x^2+15*x+68", "y^2=67*x^6+60*x^5+75*x^4+76*x^3+88*x^2+50*x+48", "y^2=97*x^6+36*x^5+32*x^4+99*x^3+106*x^2+32*x+3", "y^2=66*x^6+112*x^5+99*x^4+108*x^3+101*x^2+38*x+3", "y^2=39*x^6+14*x^5+73*x^4+5*x^3+97*x^2+107*x+107", "y^2=102*x^6+98*x^5+6*x^4+36*x^3+x^2+77*x+75", "y^2=5*x^6+4*x^5+82*x^4+92*x^3+87*x^2+57*x+64", "y^2=51*x^6+96*x^5+38*x^4+78*x^3+77*x^2+52*x+19", "y^2=23*x^6+45*x^5+10*x^4+60*x^3+19*x^2+3*x+52", "y^2=56*x^6+50*x^5+55*x^4+107*x^3+86*x^2+24*x+50", "y^2=41*x^6+23*x^5+105*x^4+90*x^3+61*x^2+60*x+10", "y^2=93*x^6+33*x^5+26*x^4+59*x^3+108*x^2+101*x+70", "y^2=92*x^6+13*x^5+35*x^4+21*x^3+18*x^2+65*x+93", "y^2=112*x^6+37*x^5+70*x^4+43*x^3+65*x^2+112*x+93", "y^2=4*x^6+43*x^5+16*x^4+34*x^3+31*x^2+65*x+36", "y^2=28*x^6+73*x^5+50*x^4+80*x^3+43*x^2+95*x+52", "y^2=81*x^6+19*x^5+72*x^4+80*x^3+12*x^2+60*x+70", "y^2=58*x^6+56*x^5+65*x^4+89*x^3+78*x^2+8*x+77", "y^2=67*x^6+14*x^5+65*x^4+46*x^3+48*x^2+112*x+110", "y^2=99*x^6+11*x^4+44*x^3+95*x^2+46*x+15", "y^2=15*x^6+78*x^5+80*x^4+79*x^3+45*x^2+102*x+31", "y^2=53*x^6+10*x^5+19*x^4+66*x^3+90*x^2+45*x+94", "y^2=51*x^6+7*x^5+103*x^4+9*x^3+23*x^2+63*x+98", "y^2=84*x^6+79*x^5+97*x^4+2*x^3+26*x^2+44*x+2", "y^2=37*x^6+59*x^5+57*x^4+11*x^3+57*x^2+44*x+107", "y^2=23*x^6+18*x^5+28*x^4+109*x^3+55*x^2+74*x+40", "y^2=103*x^6+55*x^5+29*x^4+73*x^3+36*x^2+29*x+32", "y^2=18*x^6+46*x^5+70*x^4+78*x^3+3*x^2+87*x+3", "y^2=23*x^6+89*x^5+103*x^4+22*x^3+54*x^2+51*x+37", "y^2=65*x^6+25*x^5+39*x^4+84*x^3+98*x^2+94*x+71", "y^2=87*x^6+15*x^5+x^4+104*x^3+79*x^2+94*x+82", "y^2=5*x^6+27*x^5+21*x^4+93*x^3+39*x^2+84*x+18", "y^2=73*x^6+71*x^5+85*x^4+8*x^3+103*x^2+86*x+103", "y^2=72*x^6+52*x^5+84*x^4+85*x^3+48*x^2+2*x+10", "y^2=8*x^6+52*x^5+40*x^4+13*x^3+4*x^2+106*x+73", "y^2=48*x^6+39*x^5+44*x^4+95*x^3+46*x^2+41*x+86", "y^2=8*x^6+36*x^5+103*x^4+65*x^3+76*x^2+16*x+108", "y^2=32*x^6+57*x^5+93*x^4+44*x^3+17*x^2+77*x+5", "y^2=79*x^6+20*x^5+101*x^4+29*x^3+48*x^2+29*x+38", "y^2=48*x^6+47*x^5+28*x^4+110*x^3+33*x^2+8*x+98", "y^2=79*x^5+107*x^4+16*x^3+10*x^2+58", "y^2=78*x^6+104*x^5+36*x^4+90*x^3+11*x^2+4*x+21", "y^2=61*x^6+94*x^5+107*x^4+56*x^3+22*x^2+19*x+35", "y^2=21*x^6+36*x^5+92*x^4+54*x^3+23*x^2+80*x+101", "y^2=95*x^6+77*x^5+60*x^4+77*x^3+73*x^2+58*x+41", "y^2=108*x^6+95*x^5+3*x^4+12*x^3+11*x^2+26*x+26", "y^2=87*x^6+77*x^5+68*x^4+86*x^3+35*x^2+79*x+37", "y^2=24*x^6+63*x^5+65*x^4+96*x^3+60*x^2+22*x+77"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 4, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.227.1", "2.0.388.1"], "geometric_splitting_polynomials": [[1697, -308, 309, -2, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 60, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 60, "label": "2.113.ax_ni", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.227.1", "2.0.388.1"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -23, 346, -2599, 12769], "poly_str": "1 -23 346 -2599 12769 ", "primitive_models": [], "q": 113, "real_poly": [1, -23, 120], "simple_distinct": ["1.113.ap", "1.113.ai"], "simple_factors": ["1.113.apA", "1.113.aiA"], "simple_multiplicities": [1, 1], "singular_primes": ["7,2*F-31", "7,7*F+2*V-3"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_polynomials": [[1697, -308, 309, -2, 1]], "twist_count": 4, "twists": [["2.113.ah_ec", "2.12769.gh_bmam", 2], ["2.113.h_ec", "2.12769.gh_bmam", 2], ["2.113.x_ni", "2.12769.gh_bmam", 2]], "weak_equivalence_count": 4, "zfv_index": 49, "zfv_index_factorization": [[7, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 88076, "zfv_singular_count": 4, "zfv_singular_primes": ["7,2*F-31", "7,7*F+2*V-3"]}