Invariants
This isogeny class is simple and geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$10484$ |
$164892352$ |
$2086603219664$ |
$26587264602270464$ |
$339456399528740273524$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$91$ |
$12913$ |
$1446118$ |
$163064673$ |
$18424333371$ |
$2081952055198$ |
$235260565069579$ |
$26584441950038721$ |
$3004041933768029254$ |
$339456738928585026993$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 84 curves (of which all are hyperelliptic):
- $y^2=50 x^6+7 x^5+12 x^4+89 x^3+99 x^2+43$
- $y^2=90 x^6+25 x^5+14 x^4+19 x^3+99 x^2+66 x+18$
- $y^2=86 x^6+11 x^5+55 x^4+38 x^3+73 x^2+105 x+80$
- $y^2=9 x^6+22 x^5+94 x^4+7 x^3+37 x^2+96 x+52$
- $y^2=98 x^6+69 x^5+102 x^4+12 x^3+55 x^2+62 x+9$
- $y^2=73 x^6+13 x^5+95 x^4+34 x^3+23 x^2+84 x+85$
- $y^2=102 x^6+64 x^5+103 x^4+88 x^3+2 x^2+40 x+79$
- $y^2=108 x^6+71 x^5+14 x^4+x^3+26 x^2+97 x+105$
- $y^2=94 x^6+61 x^5+110 x^4+64 x^3+39 x^2+21 x+70$
- $y^2=38 x^6+86 x^5+91 x^4+48 x^3+78 x^2+48 x+84$
- $y^2=85 x^6+73 x^5+71 x^4+57 x^3+88 x^2+52 x+66$
- $y^2=93 x^6+36 x^5+102 x^4+49 x^3+71 x^2+14 x+12$
- $y^2=30 x^6+11 x^5+79 x^4+55 x^3+72 x^2+53 x+34$
- $y^2=25 x^6+44 x^5+15 x^4+38 x^3+6 x^2+100 x+54$
- $y^2=79 x^6+75 x^5+69 x^4+95 x^3+27 x^2+30 x+42$
- $y^2=74 x^6+73 x^5+65 x^4+23 x^3+71 x^2+21 x+59$
- $y^2=77 x^6+107 x^5+107 x^4+2 x^3+39 x^2+37 x+55$
- $y^2=39 x^6+82 x^5+93 x^4+12 x^3+7 x^2+109 x+34$
- $y^2=89 x^6+8 x^5+91 x^4+111 x^3+89 x^2+35 x+84$
- $y^2=68 x^6+2 x^5+51 x^4+111 x^3+81 x^2+54 x+8$
- and 64 more
- $y^2=108 x^5+57 x^4+82 x^3+92 x^2+82 x+21$
- $y^2=83 x^6+61 x^5+61 x^4+79 x^3+106 x^2+49 x+81$
- $y^2=56 x^6+88 x^5+79 x^4+40 x^3+16 x^2+20 x+17$
- $y^2=103 x^6+44 x^5+78 x^4+14 x^3+98 x^2+12 x+76$
- $y^2=46 x^6+72 x^5+108 x^4+x^3+17 x^2+4 x+13$
- $y^2=111 x^6+77 x^5+41 x^4+102 x^3+32 x^2+102 x+16$
- $y^2=92 x^6+78 x^5+27 x^4+76 x^3+55 x^2+38 x+86$
- $y^2=22 x^6+18 x^5+x^4+9 x^3+92 x^2+107 x+87$
- $y^2=44 x^6+46 x^5+107 x^4+68 x^3+63 x^2+78 x+85$
- $y^2=89 x^6+35 x^5+49 x^4+22 x^3+101 x^2+109$
- $y^2=17 x^6+73 x^5+107 x^4+32 x^3+79 x^2+11 x+68$
- $y^2=49 x^6+72 x^5+7 x^4+28 x^3+47 x^2+3 x+79$
- $y^2=79 x^6+82 x^5+69 x^4+41 x^3+83 x^2+31 x+6$
- $y^2=63 x^6+82 x^5+12 x^4+29 x^3+44 x^2+72 x+61$
- $y^2=45 x^6+43 x^5+56 x^4+29 x^3+111 x^2+31 x+89$
- $y^2=103 x^6+37 x^5+88 x^4+75 x^3+55 x^2+73 x+67$
- $y^2=83 x^6+91 x^5+86 x^3+40 x^2+101 x+63$
- $y^2=8 x^6+82 x^5+95 x^4+78 x^3+48 x^2+91 x+80$
- $y^2=39 x^6+66 x^5+38 x^4+88 x^3+48 x^2+11 x+86$
- $y^2=33 x^6+104 x^5+46 x^4+22 x^3+105 x^2+83 x+96$
- $y^2=6 x^6+31 x^5+71 x^4+5 x^3+44 x^2+51 x+45$
- $y^2=17 x^6+24 x^5+55 x^4+50 x^3+13 x^2+97 x+46$
- $y^2=x^6+22 x^5+12 x^4+80 x^3+112 x^2+39 x+27$
- $y^2=50 x^6+67 x^5+109 x^4+33 x^3+45 x^2+10 x+90$
- $y^2=45 x^6+106 x^5+57 x^4+33 x^3+30 x^2+24 x+80$
- $y^2=58 x^6+86 x^4+73 x^3+107 x^2+42 x+64$
- $y^2=46 x^6+62 x^5+107 x^4+60 x^3+82 x^2+38 x+9$
- $y^2=108 x^6+88 x^5+9 x^4+102 x^3+72 x^2+100 x+75$
- $y^2=30 x^6+10 x^5+60 x^4+85 x^3+15 x^2+103 x+90$
- $y^2=69 x^6+59 x^5+32 x^4+92 x^3+111 x^2+26 x+70$
- $y^2=22 x^6+42 x^5+104 x^4+100 x^3+4 x^2+45 x+67$
- $y^2=101 x^6+53 x^5+19 x^4+68 x^3+33 x^2+92 x$
- $y^2=15 x^6+6 x^5+109 x^4+100 x^3+38 x^2+58 x+8$
- $y^2=73 x^6+34 x^5+91 x^4+76 x^3+19 x^2+26 x+45$
- $y^2=110 x^6+47 x^5+45 x^4+106 x^3+112 x^2+49 x$
- $y^2=19 x^6+53 x^5+4 x^4+58 x^3+54 x^2+103 x+88$
- $y^2=23 x^6+111 x^5+23 x^4+89 x^3+87 x^2+40 x+60$
- $y^2=111 x^6+49 x^5+103 x^4+103 x^3+87 x^2+88 x+98$
- $y^2=27 x^6+60 x^5+52 x^4+2 x^3+39 x^2+102 x+92$
- $y^2=58 x^6+11 x^5+42 x^4+112 x^3+82 x^2+19 x+30$
- $y^2=106 x^6+108 x^5+6 x^4+110 x^3+18 x^2+80 x+84$
- $y^2=85 x^6+8 x^5+73 x^4+41 x^3+13 x^2+102 x+1$
- $y^2=78 x^6+53 x^5+47 x^4+20 x^3+30 x^2+62 x+78$
- $y^2=55 x^6+105 x^5+44 x^4+100 x^3+98 x^2+112 x+40$
- $y^2=76 x^6+44 x^5+53 x^4+104 x^3+65 x^2+58 x+78$
- $y^2=36 x^6+41 x^5+62 x^4+53 x^3+4 x^2+90 x+108$
- $y^2=61 x^6+111 x^5+57 x^4+108 x^3+18 x^2+22 x+36$
- $y^2=42 x^6+101 x^5+20 x^4+56 x^3+54 x^2+28 x+78$
- $y^2=43 x^6+78 x^5+58 x^4+71 x^3+78 x^2+102 x+90$
- $y^2=39 x^6+67 x^5+8 x^4+91 x^3+30 x^2+16 x+108$
- $y^2=10 x^6+13 x^5+75 x^4+74 x^3+76 x^2+110 x+97$
- $y^2=106 x^6+67 x^5+75 x^4+99 x^3+102 x^2+68 x+69$
- $y^2=27 x^6+57 x^5+91 x^4+91 x^3+79 x^2+42 x+22$
- $y^2=109 x^6+88 x^5+14 x^4+104 x^3+52 x^2+11 x+15$
- $y^2=93 x^6+48 x^5+60 x^4+111 x^3+69 x^2+22 x+108$
- $y^2=98 x^6+13 x^5+24 x^3+45 x^2+94 x+65$
- $y^2=70 x^6+79 x^5+67 x^4+13 x^3+101 x^2+32 x+87$
- $y^2=51 x^6+29 x^5+105 x^4+88 x^3+64 x^2+57 x+12$
- $y^2=65 x^6+34 x^5+21 x^4+52 x^3+72 x^2+46 x+51$
- $y^2=44 x^6+91 x^5+37 x^4+2 x^2+83 x+45$
- $y^2=39 x^6+30 x^5+87 x^4+110 x^3+57 x^2+60 x+26$
- $y^2=46 x^6+87 x^5+27 x^4+93 x^3+12 x^2+95 x+89$
- $y^2=101 x^6+109 x^5+102 x^4+14 x^3+43 x^2+71 x+40$
- $y^2=75 x^6+51 x^5+66 x^4+93 x^3+57 x^2+49 x+47$
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$
The endomorphism algebra of this simple isogeny class is 4.0.37989116.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
2.113.x_my | $2$ | (not in LMFDB) |