-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10484, 'abvar_counts': [10484, 164892352, 2086603219664, 26587264602270464, 339456399528740273524, 4334523730168013990281216, 55347529471602571962211259252, 706732553237385790183325988531200, 9024267952502519480641198694759193296, 115230877625631639510827621879216255733952], 'abvar_counts_str': '10484 164892352 2086603219664 26587264602270464 339456399528740273524 4334523730168013990281216 55347529471602571962211259252 706732553237385790183325988531200 9024267952502519480641198694759193296 115230877625631639510827621879216255733952 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.223832413729666, 0.39663757574578], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 91, 'curve_counts': [91, 12913, 1446118, 163064673, 18424333371, 2081952055198, 235260565069579, 26584441950038721, 3004041933768029254, 339456738928585026993], 'curve_counts_str': '91 12913 1446118 163064673 18424333371 2081952055198 235260565069579 26584441950038721 3004041933768029254 339456738928585026993 ', 'curves': ['y^2=50*x^6+7*x^5+12*x^4+89*x^3+99*x^2+43', 'y^2=90*x^6+25*x^5+14*x^4+19*x^3+99*x^2+66*x+18', 'y^2=86*x^6+11*x^5+55*x^4+38*x^3+73*x^2+105*x+80', 'y^2=9*x^6+22*x^5+94*x^4+7*x^3+37*x^2+96*x+52', 'y^2=98*x^6+69*x^5+102*x^4+12*x^3+55*x^2+62*x+9', 'y^2=73*x^6+13*x^5+95*x^4+34*x^3+23*x^2+84*x+85', 'y^2=102*x^6+64*x^5+103*x^4+88*x^3+2*x^2+40*x+79', 'y^2=108*x^6+71*x^5+14*x^4+x^3+26*x^2+97*x+105', 'y^2=94*x^6+61*x^5+110*x^4+64*x^3+39*x^2+21*x+70', 'y^2=38*x^6+86*x^5+91*x^4+48*x^3+78*x^2+48*x+84', 'y^2=85*x^6+73*x^5+71*x^4+57*x^3+88*x^2+52*x+66', 'y^2=93*x^6+36*x^5+102*x^4+49*x^3+71*x^2+14*x+12', 'y^2=30*x^6+11*x^5+79*x^4+55*x^3+72*x^2+53*x+34', 'y^2=25*x^6+44*x^5+15*x^4+38*x^3+6*x^2+100*x+54', 'y^2=79*x^6+75*x^5+69*x^4+95*x^3+27*x^2+30*x+42', 'y^2=74*x^6+73*x^5+65*x^4+23*x^3+71*x^2+21*x+59', 'y^2=77*x^6+107*x^5+107*x^4+2*x^3+39*x^2+37*x+55', 'y^2=39*x^6+82*x^5+93*x^4+12*x^3+7*x^2+109*x+34', 'y^2=89*x^6+8*x^5+91*x^4+111*x^3+89*x^2+35*x+84', 'y^2=68*x^6+2*x^5+51*x^4+111*x^3+81*x^2+54*x+8', 'y^2=108*x^5+57*x^4+82*x^3+92*x^2+82*x+21', 'y^2=83*x^6+61*x^5+61*x^4+79*x^3+106*x^2+49*x+81', 'y^2=56*x^6+88*x^5+79*x^4+40*x^3+16*x^2+20*x+17', 'y^2=103*x^6+44*x^5+78*x^4+14*x^3+98*x^2+12*x+76', 'y^2=46*x^6+72*x^5+108*x^4+x^3+17*x^2+4*x+13', 'y^2=111*x^6+77*x^5+41*x^4+102*x^3+32*x^2+102*x+16', 'y^2=92*x^6+78*x^5+27*x^4+76*x^3+55*x^2+38*x+86', 'y^2=22*x^6+18*x^5+x^4+9*x^3+92*x^2+107*x+87', 'y^2=44*x^6+46*x^5+107*x^4+68*x^3+63*x^2+78*x+85', 'y^2=89*x^6+35*x^5+49*x^4+22*x^3+101*x^2+109', 'y^2=17*x^6+73*x^5+107*x^4+32*x^3+79*x^2+11*x+68', 'y^2=49*x^6+72*x^5+7*x^4+28*x^3+47*x^2+3*x+79', 'y^2=79*x^6+82*x^5+69*x^4+41*x^3+83*x^2+31*x+6', 'y^2=63*x^6+82*x^5+12*x^4+29*x^3+44*x^2+72*x+61', 'y^2=45*x^6+43*x^5+56*x^4+29*x^3+111*x^2+31*x+89', 'y^2=103*x^6+37*x^5+88*x^4+75*x^3+55*x^2+73*x+67', 'y^2=83*x^6+91*x^5+86*x^3+40*x^2+101*x+63', 'y^2=8*x^6+82*x^5+95*x^4+78*x^3+48*x^2+91*x+80', 'y^2=39*x^6+66*x^5+38*x^4+88*x^3+48*x^2+11*x+86', 'y^2=33*x^6+104*x^5+46*x^4+22*x^3+105*x^2+83*x+96', 'y^2=6*x^6+31*x^5+71*x^4+5*x^3+44*x^2+51*x+45', 'y^2=17*x^6+24*x^5+55*x^4+50*x^3+13*x^2+97*x+46', 'y^2=x^6+22*x^5+12*x^4+80*x^3+112*x^2+39*x+27', 'y^2=50*x^6+67*x^5+109*x^4+33*x^3+45*x^2+10*x+90', 'y^2=45*x^6+106*x^5+57*x^4+33*x^3+30*x^2+24*x+80', 'y^2=58*x^6+86*x^4+73*x^3+107*x^2+42*x+64', 'y^2=46*x^6+62*x^5+107*x^4+60*x^3+82*x^2+38*x+9', 'y^2=108*x^6+88*x^5+9*x^4+102*x^3+72*x^2+100*x+75', 'y^2=30*x^6+10*x^5+60*x^4+85*x^3+15*x^2+103*x+90', 'y^2=69*x^6+59*x^5+32*x^4+92*x^3+111*x^2+26*x+70', 'y^2=22*x^6+42*x^5+104*x^4+100*x^3+4*x^2+45*x+67', 'y^2=101*x^6+53*x^5+19*x^4+68*x^3+33*x^2+92*x', 'y^2=15*x^6+6*x^5+109*x^4+100*x^3+38*x^2+58*x+8', 'y^2=73*x^6+34*x^5+91*x^4+76*x^3+19*x^2+26*x+45', 'y^2=110*x^6+47*x^5+45*x^4+106*x^3+112*x^2+49*x', 'y^2=19*x^6+53*x^5+4*x^4+58*x^3+54*x^2+103*x+88', 'y^2=23*x^6+111*x^5+23*x^4+89*x^3+87*x^2+40*x+60', 'y^2=111*x^6+49*x^5+103*x^4+103*x^3+87*x^2+88*x+98', 'y^2=27*x^6+60*x^5+52*x^4+2*x^3+39*x^2+102*x+92', 'y^2=58*x^6+11*x^5+42*x^4+112*x^3+82*x^2+19*x+30', 'y^2=106*x^6+108*x^5+6*x^4+110*x^3+18*x^2+80*x+84', 'y^2=85*x^6+8*x^5+73*x^4+41*x^3+13*x^2+102*x+1', 'y^2=78*x^6+53*x^5+47*x^4+20*x^3+30*x^2+62*x+78', 'y^2=55*x^6+105*x^5+44*x^4+100*x^3+98*x^2+112*x+40', 'y^2=76*x^6+44*x^5+53*x^4+104*x^3+65*x^2+58*x+78', 'y^2=36*x^6+41*x^5+62*x^4+53*x^3+4*x^2+90*x+108', 'y^2=61*x^6+111*x^5+57*x^4+108*x^3+18*x^2+22*x+36', 'y^2=42*x^6+101*x^5+20*x^4+56*x^3+54*x^2+28*x+78', 'y^2=43*x^6+78*x^5+58*x^4+71*x^3+78*x^2+102*x+90', 'y^2=39*x^6+67*x^5+8*x^4+91*x^3+30*x^2+16*x+108', 'y^2=10*x^6+13*x^5+75*x^4+74*x^3+76*x^2+110*x+97', 'y^2=106*x^6+67*x^5+75*x^4+99*x^3+102*x^2+68*x+69', 'y^2=27*x^6+57*x^5+91*x^4+91*x^3+79*x^2+42*x+22', 'y^2=109*x^6+88*x^5+14*x^4+104*x^3+52*x^2+11*x+15', 'y^2=93*x^6+48*x^5+60*x^4+111*x^3+69*x^2+22*x+108', 'y^2=98*x^6+13*x^5+24*x^3+45*x^2+94*x+65', 'y^2=70*x^6+79*x^5+67*x^4+13*x^3+101*x^2+32*x+87', 'y^2=51*x^6+29*x^5+105*x^4+88*x^3+64*x^2+57*x+12', 'y^2=65*x^6+34*x^5+21*x^4+52*x^3+72*x^2+46*x+51', 'y^2=44*x^6+91*x^5+37*x^4+2*x^2+83*x+45', 'y^2=39*x^6+30*x^5+87*x^4+110*x^3+57*x^2+60*x+26', 'y^2=46*x^6+87*x^5+27*x^4+93*x^3+12*x^2+95*x+89', 'y^2=101*x^6+109*x^5+102*x^4+14*x^3+43*x^2+71*x+40', 'y^2=75*x^6+51*x^5+66*x^4+93*x^3+57*x^2+49*x+47'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 3, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.37989116.2'], 'geometric_splitting_field': '4.0.37989116.2', 'geometric_splitting_polynomials': [[5599, 187, 138, -1, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 84, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 84, 'label': '2.113.ax_my', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.37989116.2'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 11, 1, 2], [1, 47, 1, 3], [1, 47, 2, 12], [1, 53, 1, 6]], 'poly': [1, -23, 336, -2599, 12769], 'poly_str': '1 -23 336 -2599 12769 ', 'primitive_models': [], 'principal_polarization_count': 84, 'q': 113, 'real_poly': [1, -23, 110], 'simple_distinct': ['2.113.ax_my'], 'simple_factors': ['2.113.ax_myA'], 'simple_multiplicities': [1], 'singular_primes': ['2,-F^2+F'], 'size': 84, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.37989116.2', 'splitting_polynomials': [[5599, 187, 138, -1, 1]], 'twist_count': 2, 'twists': [['2.113.x_my', '2.12769.fn_bbye', 2]], 'weak_equivalence_count': 3, 'zfv_index': 4, 'zfv_index_factorization': [[2, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 48, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 76736, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,-F^2+F']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.ax_my', 'extension_degree': 1, 'extension_label': '2.113.ax_my', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.37989116.2', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.ax_my', 'galois_group': '4T3', 'places': [['1195/113', '168/113', '5/113', '1/113'], ['107', '1', '0', '0']]}