Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 23 x + 300 x^{2} - 2599 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.143638191269$, $\pm0.441766388203$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.127470572.1 |
Galois group: | $D_{4}$ |
Jacobians: | $154$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10448$ | $163950016$ | $2083015962944$ | $26582310624386816$ | $339455941899371562448$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $91$ | $12841$ | $1443634$ | $163034289$ | $18424308531$ | $2081955685726$ | $235260608110675$ | $26584442185132833$ | $3004041936628680658$ | $339456738990112450521$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 154 curves (of which all are hyperelliptic):
- $y^2=60 x^6+33 x^5+107 x^4+3 x^3+77 x^2+11 x$
- $y^2=20 x^6+24 x^5+37 x^4+52 x^3+x^2+88 x+7$
- $y^2=x^6+90 x^5+61 x^4+81 x^3+89 x^2+100 x+48$
- $y^2=38 x^6+79 x^5+96 x^4+72 x^3+75 x^2+20 x+27$
- $y^2=30 x^6+54 x^5+49 x^4+70 x^3+35 x^2+60 x+28$
- $y^2=82 x^6+25 x^5+85 x^4+26 x^3+48 x^2+62 x+34$
- $y^2=25 x^6+21 x^5+18 x^4+94 x^3+68 x^2+86 x+55$
- $y^2=53 x^6+49 x^5+93 x^4+10 x^3+27 x^2+96 x+16$
- $y^2=25 x^6+36 x^5+30 x^4+90 x^3+101 x^2+8 x+44$
- $y^2=108 x^6+25 x^5+104 x^4+86 x^3+36 x^2+3 x+74$
- $y^2=73 x^6+112 x^5+7 x^4+25 x^3+47 x^2+13 x+41$
- $y^2=101 x^6+29 x^5+53 x^4+63 x^3+44 x^2+23 x+69$
- $y^2=66 x^6+62 x^5+100 x^4+52 x^3+46 x^2+103 x+58$
- $y^2=15 x^6+73 x^5+5 x^4+33 x^3+27 x^2+34 x+98$
- $y^2=89 x^6+104 x^5+94 x^4+96 x^3+74 x^2+84 x+70$
- $y^2=17 x^5+6 x^4+59 x^3+86 x^2+41 x+17$
- $y^2=108 x^6+95 x^5+104 x^4+53 x^3+30 x^2+84 x+60$
- $y^2=12 x^6+3 x^5+74 x^4+76 x^3+25 x^2+60 x+53$
- $y^2=63 x^6+12 x^5+93 x^4+90 x^3+24 x^2+29 x+76$
- $y^2=60 x^6+72 x^5+10 x^4+88 x^3+100 x+33$
- and 134 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.127470572.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.x_lo | $2$ | (not in LMFDB) |