-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10448, 'abvar_counts': [10448, 163950016, 2083015962944, 26582310624386816, 339455941899371562448, 4334531288757042822787072, 55347539597475456652731784784, 706732559487231620375551450201088, 9024267961096036258340070384891253568, 115230877646517538059177732352146394465216], 'abvar_counts_str': '10448 163950016 2083015962944 26582310624386816 339455941899371562448 4334531288757042822787072 55347539597475456652731784784 706732559487231620375551450201088 9024267961096036258340070384891253568 115230877646517538059177732352146394465216 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.143638191268815, 0.44176638820325], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 91, 'curve_counts': [91, 12841, 1443634, 163034289, 18424308531, 2081955685726, 235260608110675, 26584442185132833, 3004041936628680658, 339456738990112450521], 'curve_counts_str': '91 12841 1443634 163034289 18424308531 2081955685726 235260608110675 26584442185132833 3004041936628680658 339456738990112450521 ', 'curves': ['y^2=60*x^6+33*x^5+107*x^4+3*x^3+77*x^2+11*x', 'y^2=20*x^6+24*x^5+37*x^4+52*x^3+x^2+88*x+7', 'y^2=x^6+90*x^5+61*x^4+81*x^3+89*x^2+100*x+48', 'y^2=38*x^6+79*x^5+96*x^4+72*x^3+75*x^2+20*x+27', 'y^2=30*x^6+54*x^5+49*x^4+70*x^3+35*x^2+60*x+28', 'y^2=82*x^6+25*x^5+85*x^4+26*x^3+48*x^2+62*x+34', 'y^2=25*x^6+21*x^5+18*x^4+94*x^3+68*x^2+86*x+55', 'y^2=53*x^6+49*x^5+93*x^4+10*x^3+27*x^2+96*x+16', 'y^2=25*x^6+36*x^5+30*x^4+90*x^3+101*x^2+8*x+44', 'y^2=108*x^6+25*x^5+104*x^4+86*x^3+36*x^2+3*x+74', 'y^2=73*x^6+112*x^5+7*x^4+25*x^3+47*x^2+13*x+41', 'y^2=101*x^6+29*x^5+53*x^4+63*x^3+44*x^2+23*x+69', 'y^2=66*x^6+62*x^5+100*x^4+52*x^3+46*x^2+103*x+58', 'y^2=15*x^6+73*x^5+5*x^4+33*x^3+27*x^2+34*x+98', 'y^2=89*x^6+104*x^5+94*x^4+96*x^3+74*x^2+84*x+70', 'y^2=17*x^5+6*x^4+59*x^3+86*x^2+41*x+17', 'y^2=108*x^6+95*x^5+104*x^4+53*x^3+30*x^2+84*x+60', 'y^2=12*x^6+3*x^5+74*x^4+76*x^3+25*x^2+60*x+53', 'y^2=63*x^6+12*x^5+93*x^4+90*x^3+24*x^2+29*x+76', 'y^2=60*x^6+72*x^5+10*x^4+88*x^3+100*x+33', 'y^2=18*x^6+30*x^5+94*x^4+110*x^3+55*x^2+39*x+103', 'y^2=86*x^6+20*x^5+17*x^4+12*x^3+31*x^2+67*x+16', 'y^2=46*x^6+31*x^5+112*x^4+85*x^3+66*x^2+32*x+9', 'y^2=x^5+11*x^4+6*x^3+62*x^2+52*x+48', 'y^2=65*x^6+37*x^5+62*x^4+21*x^3+41*x^2+63*x+99', 'y^2=108*x^6+65*x^5+52*x^4+29*x^3+19*x^2+101*x+60', 'y^2=59*x^6+85*x^5+87*x^4+81*x^3+25*x^2+105*x+26', 'y^2=36*x^6+33*x^5+37*x^4+81*x^3+16*x^2+12*x+34', 'y^2=80*x^6+39*x^5+68*x^4+9*x^3+94*x^2+90*x+49', 'y^2=75*x^6+97*x^5+52*x^4+69*x^3+68*x^2+89*x+19', 'y^2=41*x^6+99*x^5+70*x^4+69*x^3+22*x^2+70*x+71', 'y^2=97*x^6+104*x^5+32*x^4+23*x^3+57*x^2+111*x+73', 'y^2=59*x^6+80*x^5+111*x^4+12*x^3+110*x^2+71*x+40', 'y^2=98*x^5+14*x^4+42*x^3+93*x^2+14*x+10', 'y^2=37*x^6+67*x^5+4*x^4+14*x^3+23*x^2+76*x+38', 'y^2=74*x^6+73*x^5+61*x^4+79*x^3+68*x^2+101*x+43', 'y^2=26*x^6+76*x^5+51*x^4+68*x^3+93*x^2+58*x+90', 'y^2=62*x^6+13*x^5+112*x^4+49*x^3+78*x+1', 'y^2=23*x^6+68*x^5+54*x^4+83*x^3+109*x^2+73*x+92', 'y^2=81*x^6+23*x^5+48*x^4+2*x^3+68*x^2+71*x+100', 'y^2=98*x^6+106*x^5+27*x^4+52*x^3+77*x^2+70*x+88', 'y^2=34*x^6+46*x^5+88*x^4+21*x^3+29*x^2+41*x+76', 'y^2=x^6+108*x^5+40*x^4+76*x^3+100*x^2+101*x+80', 'y^2=56*x^6+38*x^5+95*x^4+77*x^3+105*x^2+69*x+44', 'y^2=32*x^6+107*x^5+53*x^4+105*x^3+92*x^2+76*x+77', 'y^2=64*x^6+32*x^5+100*x^4+62*x^3+71*x^2+77*x+78', 'y^2=107*x^6+87*x^5+15*x^4+18*x^3+59*x^2+22*x+84', 'y^2=37*x^6+46*x^5+27*x^4+4*x^3+41*x^2+72*x+24', 'y^2=40*x^6+103*x^5+89*x^4+4*x^3+101*x^2+97*x', 'y^2=81*x^6+8*x^5+102*x^4+15*x^3+63*x^2+30*x+96', 'y^2=27*x^6+20*x^5+110*x^4+65*x^3+73*x^2+64*x+20', 'y^2=2*x^6+14*x^5+92*x^4+62*x^3+56*x^2+110*x+36', 'y^2=73*x^6+55*x^5+86*x^4+66*x^3+68*x^2+30*x+51', 'y^2=89*x^6+70*x^5+32*x^4+25*x^3+36*x^2+110*x+70', 'y^2=20*x^6+99*x^5+42*x^4+14*x^3+79*x^2+24*x+16', 'y^2=40*x^6+92*x^5+4*x^4+67*x^3+36*x^2+76*x+101', 'y^2=70*x^6+67*x^5+21*x^4+86*x^3+112*x^2+45*x+22', 'y^2=67*x^6+74*x^5+50*x^4+45*x^3+41*x^2+52*x+94', 'y^2=111*x^6+69*x^5+19*x^4+51*x^3+31*x^2+85*x+33', 'y^2=82*x^6+37*x^5+96*x^4+84*x^3+77*x^2+39*x+84', 'y^2=73*x^6+3*x^5+28*x^4+88*x^3+71*x^2+28*x+46', 'y^2=89*x^6+5*x^5+62*x^4+84*x^3+69*x^2+39*x+33', 'y^2=84*x^6+42*x^5+39*x^4+71*x^3+109*x^2+43*x+9', 'y^2=65*x^6+13*x^5+69*x^4+19*x^3+5*x^2+70*x+17', 'y^2=98*x^6+5*x^5+65*x^4+101*x^3+82*x^2+51*x+58', 'y^2=100*x^6+95*x^5+54*x^4+24*x^3+27*x^2+86*x+95', 'y^2=x^6+100*x^5+30*x^4+65*x^3+6*x^2+10*x+27', 'y^2=111*x^6+4*x^5+111*x^4+17*x^3+52*x^2+82*x+21', 'y^2=74*x^6+69*x^5+25*x^4+2*x^3+58*x^2+79*x+112', 'y^2=5*x^6+79*x^5+64*x^4+5*x^3+8*x^2+24*x+110', 'y^2=22*x^6+92*x^5+23*x^4+78*x^3+28*x^2+98*x+3', 'y^2=20*x^6+72*x^5+22*x^4+15*x^3+6*x^2+34*x+100', 'y^2=17*x^6+53*x^5+62*x^4+60*x^3+99*x^2+77*x+7', 'y^2=32*x^6+65*x^5+x^4+87*x^3+7*x^2+104*x+23', 'y^2=16*x^6+18*x^5+34*x^4+98*x^2+57*x+17', 'y^2=81*x^6+49*x^5+25*x^4+7*x^3+11*x^2+64*x+6', 'y^2=93*x^6+47*x^5+2*x^4+56*x^3+12*x^2+24*x+12', 'y^2=73*x^6+28*x^5+25*x^4+58*x^3+70*x^2+58*x+39', 'y^2=53*x^6+x^5+83*x^4+19*x^3+36*x^2+96*x+9', 'y^2=17*x^6+7*x^5+14*x^4+44*x^3+77*x^2+70*x+3', 'y^2=62*x^6+108*x^5+67*x^4+33*x^3+27*x^2+100*x+15', 'y^2=31*x^6+40*x^5+59*x^4+47*x^3+79*x^2+103*x+97', 'y^2=48*x^6+44*x^5+43*x^4+27*x^3+44*x^2+71*x+47', 'y^2=10*x^6+39*x^5+96*x^4+44*x^3+72*x^2+55*x+29', 'y^2=7*x^6+107*x^5+77*x^4+93*x^2+33*x+63', 'y^2=60*x^6+93*x^5+14*x^4+45*x^3+66*x^2+46*x+69', 'y^2=34*x^6+52*x^5+54*x^4+65*x^3+69*x^2+14*x+65', 'y^2=20*x^6+27*x^5+35*x^4+45*x^3+98*x^2+16*x+3', 'y^2=55*x^6+79*x^5+40*x^4+56*x^3+39*x^2+36*x+13', 'y^2=45*x^6+91*x^5+81*x^4+28*x^3+19*x^2+48*x+97', 'y^2=32*x^6+43*x^5+58*x^4+18*x^3+14*x^2+39*x+97', 'y^2=12*x^6+29*x^5+13*x^4+58*x^3+94*x^2+11*x+43', 'y^2=112*x^6+76*x^5+88*x^4+87*x^3+73*x^2+12*x+37', 'y^2=94*x^6+24*x^5+111*x^4+50*x^3+49*x^2+19*x+84', 'y^2=57*x^5+101*x^4+4*x^3+92*x^2+103*x+98', 'y^2=9*x^6+97*x^5+45*x^4+106*x^3+96*x^2+14*x+40', 'y^2=66*x^6+91*x^5+65*x^4+86*x^3+100*x^2+87*x+44', 'y^2=42*x^6+77*x^5+27*x^4+79*x^3+21*x^2+79*x+55', 'y^2=71*x^6+76*x^5+28*x^4+46*x^3+41*x^2+18*x+87', 'y^2=77*x^6+52*x^5+30*x^4+48*x^3+3*x^2+100*x+70', 'y^2=96*x^6+27*x^5+90*x^4+52*x^2+4*x+38', 'y^2=58*x^6+73*x^5+14*x^4+2*x^3+3*x^2+41*x+70', 'y^2=66*x^6+70*x^5+54*x^4+17*x^3+14*x^2+66*x+5', 'y^2=69*x^6+70*x^5+59*x^4+18*x^3+28*x^2+76*x+14', 'y^2=60*x^6+55*x^5+69*x^4+75*x^3+112*x^2+3*x+111', 'y^2=69*x^6+24*x^5+x^4+101*x^3+56*x^2+31*x+18', 'y^2=100*x^6+26*x^5+45*x^4+49*x^3+27*x^2+70*x+69', 'y^2=106*x^6+97*x^5+64*x^4+38*x^3+67*x^2+5*x+80', 'y^2=45*x^6+74*x^5+18*x^4+35*x^3+35*x^2+111*x+34', 'y^2=86*x^6+56*x^5+74*x^4+7*x^3+40*x^2+20*x+22', 'y^2=90*x^6+72*x^5+15*x^4+2*x^3+111*x^2+80*x+71', 'y^2=96*x^6+59*x^5+64*x^4+17*x^3+94*x^2+6*x+48', 'y^2=33*x^6+93*x^5+83*x^4+69*x^3+44*x^2+66*x+109', 'y^2=32*x^6+72*x^5+38*x^4+104*x^3+47*x^2+62*x+48', 'y^2=68*x^6+104*x^5+4*x^4+64*x^3+95*x^2+19*x+4', 'y^2=110*x^6+62*x^5+47*x^4+103*x^3+27*x^2+45*x+66', 'y^2=62*x^6+25*x^5+20*x^4+9*x^3+82*x^2+15*x+25', 'y^2=28*x^6+55*x^5+19*x^4+43*x^3+98*x^2+71*x+74', 'y^2=41*x^6+8*x^5+15*x^4+32*x^3+99*x^2+57*x+79', 'y^2=17*x^6+53*x^5+75*x^4+90*x^3+103*x^2+78*x+2', 'y^2=65*x^6+70*x^5+79*x^4+11*x^3+61*x^2+69*x+64', 'y^2=63*x^6+72*x^5+95*x^4+64*x^3+76*x^2+87*x+48', 'y^2=83*x^6+60*x^5+57*x^4+29*x^3+39*x^2+23*x+89', 'y^2=6*x^6+54*x^5+25*x^4+43*x^3+77*x^2+110*x+19', 'y^2=41*x^6+67*x^5+30*x^4+19*x^3+35*x^2+26*x+21', 'y^2=51*x^6+38*x^5+36*x^4+9*x^3+13*x^2+89*x', 'y^2=43*x^6+40*x^5+11*x^4+69*x^3+78*x^2+64*x+72', 'y^2=106*x^6+68*x^5+22*x^4+75*x^3+93*x^2+63*x+15', 'y^2=23*x^6+50*x^5+44*x^4+18*x^3+92*x^2+49*x+61', 'y^2=86*x^6+95*x^5+26*x^4+64*x^3+98*x^2+32', 'y^2=107*x^6+111*x^5+14*x^4+104*x^3+96*x^2+70*x+48', 'y^2=3*x^6+95*x^5+11*x^4+78*x^3+26*x^2+86', 'y^2=17*x^6+28*x^5+99*x^4+77*x^3+65*x^2+103', 'y^2=25*x^6+111*x^5+78*x^4+92*x^3+81*x^2+7*x+7', 'y^2=52*x^6+28*x^5+47*x^4+42*x^3+66*x^2+67*x+110', 'y^2=51*x^6+92*x^5+51*x^4+29*x^3+42*x^2+46*x+52', 'y^2=4*x^6+56*x^5+97*x^4+57*x^3+68*x+25', 'y^2=38*x^6+104*x^5+74*x^4+25*x^3+5*x^2+89*x+27', 'y^2=72*x^6+11*x^5+63*x^4+15*x^3+81*x^2+83*x+28', 'y^2=72*x^6+18*x^5+47*x^4+56*x^3+88*x^2+44*x+29', 'y^2=3*x^6+41*x^5+50*x^4+67*x^3+105*x^2+89*x+10', 'y^2=80*x^6+53*x^5+x^4+60*x^3+89*x^2+84*x+28', 'y^2=44*x^6+106*x^5+69*x^4+18*x^3+107*x^2+59*x+42', 'y^2=57*x^6+14*x^5+87*x^4+82*x^3+42*x^2+49*x+18', 'y^2=4*x^6+99*x^5+59*x^4+13*x^3+42*x^2+99*x+83', 'y^2=6*x^6+42*x^5+17*x^4+33*x^3+78*x^2+6*x+56', 'y^2=35*x^6+91*x^5+11*x^4+35*x^3+87*x^2+4*x+96', 'y^2=29*x^6+19*x^5+85*x^4+109*x^3+10*x^2+38*x+10', 'y^2=33*x^6+33*x^5+71*x^4+97*x^3+81*x^2+60*x+72', 'y^2=43*x^6+98*x^5+51*x^4+37*x^3+31*x^2+12*x+51', 'y^2=82*x^6+28*x^5+4*x^4+12*x^3+47*x^2+63*x+43', 'y^2=24*x^6+29*x^5+95*x^4+3*x^3+45*x^2+78*x+99', 'y^2=20*x^6+18*x^5+20*x^4+104*x^3+69*x^2+56*x+90', 'y^2=48*x^6+5*x^5+14*x^4+3*x^3+94*x^2+103*x+45'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 3, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.127470572.1'], 'geometric_splitting_field': '4.0.127470572.1', 'geometric_splitting_polynomials': [[4303, 619, 102, -1, 1]], 'group_structure_count': 3, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 154, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 154, 'label': '2.113.ax_lo', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.127470572.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -23, 300, -2599, 12769], 'poly_str': '1 -23 300 -2599 12769 ', 'primitive_models': [], 'q': 113, 'real_poly': [1, -23, 74], 'simple_distinct': ['2.113.ax_lo'], 'simple_factors': ['2.113.ax_loA'], 'simple_multiplicities': [1], 'singular_primes': ['2,2*F+V-25'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.127470572.1', 'splitting_polynomials': [[4303, 619, 102, -1, 1]], 'twist_count': 2, 'twists': [['2.113.x_lo', '2.12769.ct_afym', 2]], 'weak_equivalence_count': 3, 'zfv_index': 4, 'zfv_index_factorization': [[2, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 37568, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,2*F+V-25']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.ax_lo', 'extension_degree': 1, 'extension_label': '2.113.ax_lo', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.127470572.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.ax_lo', 'galois_group': '4T3', 'places': [['78', '1', '0', '0'], ['46', '1', '0', '0'], ['9309/113', '962/113', '12701/113', '9/113'], ['3546/113', '962/113', '12701/113', '9/113']]}