Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 332 x^{2} - 2486 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.253376567935$, $\pm0.391187100568$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.333345600.1 |
Galois group: | $D_{4}$ |
Jacobians: | $124$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10594$ | $165372340$ | $2087449906786$ | $26587761115627600$ | $339455129392045005394$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12950$ | $1446704$ | $163067718$ | $18424264432$ | $2081950235750$ | $235260545684284$ | $26584441903622398$ | $3004041935552854652$ | $339456738960678431750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 124 curves (of which all are hyperelliptic):
- $y^2=60 x^6+57 x^5+49 x^4+57 x^3+45 x^2+85 x+40$
- $y^2=54 x^6+100 x^5+86 x^4+92 x^3+16 x^2+74 x+87$
- $y^2=28 x^6+101 x^5+52 x^4+59 x^3+46 x^2+15 x+66$
- $y^2=38 x^6+46 x^5+33 x^4+3 x^3+62 x^2+32 x+32$
- $y^2=88 x^6+32 x^5+77 x^4+14 x^3+6 x^2+81 x+87$
- $y^2=84 x^6+79 x^5+3 x^4+104 x^3+78 x^2+39 x+42$
- $y^2=14 x^6+20 x^5+111 x^4+110 x^3+100 x^2+98 x+23$
- $y^2=106 x^6+108 x^5+77 x^4+20 x^3+107 x^2+92 x+90$
- $y^2=37 x^6+40 x^5+34 x^4+44 x^3+71 x^2+26 x+87$
- $y^2=23 x^6+5 x^5+3 x^4+27 x^3+61 x^2+47 x+39$
- $y^2=x^6+77 x^5+76 x^4+39 x^3+10 x^2+41 x+47$
- $y^2=79 x^6+65 x^5+6 x^4+85 x^3+28 x^2+22 x+92$
- $y^2=38 x^6+98 x^5+107 x^4+58 x^3+44 x^2+110 x+23$
- $y^2=85 x^6+103 x^5+77 x^4+74 x^3+17 x^2+36 x+6$
- $y^2=23 x^6+5 x^5+10 x^4+64 x^3+21 x^2+27 x+24$
- $y^2=95 x^6+2 x^5+82 x^4+98 x^3+24 x^2+71 x+23$
- $y^2=91 x^6+21 x^5+69 x^4+51 x^3+109 x^2+101 x+70$
- $y^2=52 x^6+99 x^5+35 x^4+63 x^3+33 x^2+17 x+17$
- $y^2=40 x^6+39 x^5+59 x^4+35 x^3+74 x^2+76 x+54$
- $y^2=30 x^6+44 x^5+87 x^4+54 x^3+94 x^2+67 x+78$
- and 104 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.333345600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.w_mu | $2$ | (not in LMFDB) |