# Curves in abelian variety isogeny class 2.113.aw_mu, downloaded from the LMFDB on 10 October 2025. y^2=60*x^6+57*x^5+49*x^4+57*x^3+45*x^2+85*x+40 y^2=54*x^6+100*x^5+86*x^4+92*x^3+16*x^2+74*x+87 y^2=28*x^6+101*x^5+52*x^4+59*x^3+46*x^2+15*x+66 y^2=38*x^6+46*x^5+33*x^4+3*x^3+62*x^2+32*x+32 y^2=88*x^6+32*x^5+77*x^4+14*x^3+6*x^2+81*x+87 y^2=84*x^6+79*x^5+3*x^4+104*x^3+78*x^2+39*x+42 y^2=14*x^6+20*x^5+111*x^4+110*x^3+100*x^2+98*x+23 y^2=106*x^6+108*x^5+77*x^4+20*x^3+107*x^2+92*x+90 y^2=37*x^6+40*x^5+34*x^4+44*x^3+71*x^2+26*x+87 y^2=23*x^6+5*x^5+3*x^4+27*x^3+61*x^2+47*x+39 y^2=x^6+77*x^5+76*x^4+39*x^3+10*x^2+41*x+47 y^2=79*x^6+65*x^5+6*x^4+85*x^3+28*x^2+22*x+92 y^2=38*x^6+98*x^5+107*x^4+58*x^3+44*x^2+110*x+23 y^2=85*x^6+103*x^5+77*x^4+74*x^3+17*x^2+36*x+6 y^2=23*x^6+5*x^5+10*x^4+64*x^3+21*x^2+27*x+24 y^2=95*x^6+2*x^5+82*x^4+98*x^3+24*x^2+71*x+23 y^2=91*x^6+21*x^5+69*x^4+51*x^3+109*x^2+101*x+70 y^2=52*x^6+99*x^5+35*x^4+63*x^3+33*x^2+17*x+17 y^2=40*x^6+39*x^5+59*x^4+35*x^3+74*x^2+76*x+54 y^2=30*x^6+44*x^5+87*x^4+54*x^3+94*x^2+67*x+78 y^2=41*x^6+89*x^5+4*x^4+76*x^3+96*x^2+91*x+4 y^2=83*x^6+84*x^5+48*x^4+73*x^3+65*x^2+16*x+12 y^2=100*x^6+87*x^5+97*x^4+39*x^3+107*x^2+101*x+57 y^2=54*x^6+10*x^5+75*x^4+71*x^3+66*x^2+62*x+20 y^2=38*x^6+4*x^5+42*x^4+41*x^3+89*x^2+37*x+79 y^2=98*x^6+108*x^5+36*x^4+25*x^3+10*x^2+50*x+108 y^2=90*x^6+27*x^5+30*x^4+86*x^3+92*x^2+68*x+94 y^2=78*x^6+20*x^5+86*x^4+95*x^3+50*x^2+69*x+7 y^2=101*x^6+97*x^5+97*x^4+81*x^3+107*x^2+107*x+90 y^2=101*x^6+106*x^5+18*x^4+37*x^3+20*x^2+2*x+92 y^2=108*x^6+7*x^5+18*x^4+37*x^3+3*x^2+78*x+60 y^2=21*x^6+112*x^5+22*x^4+111*x^3+49*x^2+61*x+37 y^2=50*x^6+96*x^5+92*x^4+112*x^3+57*x^2+40*x+54 y^2=53*x^6+80*x^5+101*x^4+111*x^3+51*x^2+77*x+27 y^2=35*x^6+37*x^5+51*x^4+4*x^3+34*x^2+34*x+21 y^2=39*x^6+87*x^5+69*x^4+48*x^3+80*x^2+71*x+13 y^2=102*x^6+9*x^5+105*x^4+55*x^3+79*x^2+102*x+69 y^2=34*x^6+44*x^5+71*x^4+22*x^3+71*x^2+91*x+55 y^2=45*x^6+20*x^5+46*x^4+37*x^3+92*x^2+105*x+112 y^2=102*x^6+92*x^5+19*x^4+59*x^3+89*x^2+37*x+37 y^2=55*x^6+107*x^5+61*x^4+98*x^3+8*x^2+14*x+85 y^2=40*x^6+22*x^5+25*x^4+100*x^3+107*x^2+88*x+35 y^2=60*x^6+109*x^5+35*x^4+2*x^3+48*x^2+61*x+45 y^2=86*x^6+86*x^5+91*x^4+107*x^3+55*x^2+30*x+77 y^2=78*x^6+50*x^5+35*x^4+35*x^3+39*x^2+66*x+54 y^2=2*x^6+97*x^5+87*x^4+98*x^3+111*x^2+67*x+38 y^2=43*x^6+43*x^5+5*x^4+43*x^3+26*x^2+86*x+39 y^2=55*x^6+7*x^5+73*x^4+47*x^3+61*x^2+69*x+20 y^2=19*x^6+36*x^5+33*x^4+39*x^3+7*x^2+38*x+75 y^2=46*x^6+93*x^5+52*x^4+30*x^3+111*x^2+61*x+6 y^2=21*x^6+52*x^5+42*x^4+78*x^3+99*x^2+77*x+103 y^2=11*x^6+67*x^5+15*x^4+60*x^3+50*x^2+60*x+73 y^2=59*x^6+81*x^5+92*x^4+85*x^3+91*x^2+106*x+53 y^2=56*x^6+68*x^5+9*x^4+96*x^3+109*x^2+42*x+48 y^2=99*x^5+25*x^4+52*x^3+104*x^2+85*x+1 y^2=78*x^6+61*x^5+84*x^4+8*x^3+19*x^2+110*x+88 y^2=108*x^6+11*x^5+86*x^4+92*x^3+79*x^2+15*x+27 y^2=31*x^6+44*x^5+41*x^4+62*x^3+5*x^2+35*x+106 y^2=108*x^6+76*x^5+5*x^4+41*x^3+x^2+81*x+41 y^2=93*x^6+88*x^5+45*x^4+78*x^3+21*x^2+37*x+93 y^2=51*x^6+14*x^5+10*x^4+88*x^3+73*x^2+65*x+84 y^2=99*x^5+93*x^4+106*x^3+86*x^2+60*x+11 y^2=20*x^6+56*x^5+66*x^4+97*x^3+3*x^2+83*x+73 y^2=17*x^6+33*x^5+60*x^4+63*x^3+73*x^2+27*x+7 y^2=44*x^6+81*x^5+100*x^4+37*x^3+91*x^2+105*x+65 y^2=100*x^6+57*x^5+72*x^4+11*x^3+19*x^2+108*x+18 y^2=10*x^6+54*x^5+97*x^4+100*x^3+15*x^2+15*x+81 y^2=67*x^6+32*x^5+30*x^4+68*x^3+89*x^2+104*x+45 y^2=95*x^6+52*x^5+81*x^4+18*x^3+75*x^2+30*x+95 y^2=75*x^6+34*x^5+53*x^4+77*x^3+65*x^2+55*x+76 y^2=45*x^6+88*x^5+43*x^4+68*x^3+53*x^2+24*x+99 y^2=99*x^6+110*x^5+x^4+29*x^3+56*x^2+96*x+78 y^2=93*x^6+68*x^5+97*x^4+99*x^3+65*x^2+63*x+55 y^2=78*x^6+44*x^5+41*x^4+15*x^3+94*x^2+4*x+99 y^2=41*x^6+56*x^5+105*x^4+100*x^3+7*x^2+5*x+93 y^2=63*x^6+90*x^5+9*x^4+32*x^3+24*x^2+77*x+76 y^2=23*x^6+91*x^5+87*x^4+95*x^3+x^2+60*x+1 y^2=108*x^6+52*x^5+99*x^4+96*x^3+74*x^2+109*x+108 y^2=34*x^6+53*x^5+104*x^4+55*x^3+18*x^2+69*x+31 y^2=14*x^6+86*x^5+58*x^4+59*x^3+64*x^2+6*x+32 y^2=112*x^6+62*x^5+11*x^4+20*x^3+90*x^2+93*x+89 y^2=102*x^6+4*x^5+56*x^4+34*x^3+86*x^2+59*x+67 y^2=40*x^6+79*x^5+104*x^4+43*x^3+62*x^2+12*x+73 y^2=28*x^6+39*x^5+101*x^4+79*x^3+47*x^2+105*x+48 y^2=93*x^6+80*x^5+63*x^4+79*x^3+14*x^2+110*x+56 y^2=90*x^6+106*x^5+49*x^4+64*x^3+18*x^2+4*x+74 y^2=80*x^6+82*x^5+40*x^4+47*x^3+51*x^2+21*x+74 y^2=2*x^6+98*x^5+110*x^4+105*x^3+23*x^2+23*x+22 y^2=56*x^6+81*x^5+36*x^4+53*x^3+39*x^2+37*x+28 y^2=106*x^6+7*x^5+99*x^4+37*x^3+42*x^2+86*x+82 y^2=61*x^6+38*x^5+70*x^4+81*x^3+101*x^2+3*x+52 y^2=68*x^6+88*x^5+107*x^4+85*x^3+56*x^2+66*x+73 y^2=34*x^6+5*x^5+83*x^4+96*x^3+100*x^2+68*x+100 y^2=27*x^6+61*x^5+45*x^4+20*x^3+20*x^2+86 y^2=75*x^5+41*x^4+28*x^3+70*x^2+24*x+56 y^2=92*x^6+95*x^5+76*x^4+56*x^3+96*x^2+31*x+55 y^2=84*x^6+87*x^5+83*x^4+82*x^3+2*x^2+58*x+104 y^2=36*x^6+84*x^5+69*x^4+65*x^3+56*x^2+40*x+24 y^2=99*x^6+67*x^5+103*x^4+75*x^3+39*x^2+59*x+13 y^2=43*x^6+80*x^5+65*x^4+58*x^3+111*x^2+76*x+82 y^2=95*x^6+103*x^5+55*x^4+27*x^3+103*x^2+22*x+86 y^2=32*x^6+26*x^5+104*x^4+89*x^3+64*x^2+96*x+65 y^2=15*x^6+92*x^5+99*x^4+112*x^3+35*x^2+10*x+112 y^2=102*x^6+50*x^5+86*x^4+45*x^3+46*x^2+109*x+9 y^2=95*x^6+76*x^5+21*x^4+56*x^3+16*x^2+95*x+59 y^2=70*x^6+6*x^5+5*x^4+68*x^3+6*x^2+59*x+47 y^2=75*x^6+106*x^5+74*x^4+86*x^3+57*x^2+86*x+100 y^2=59*x^6+90*x^5+66*x^4+82*x^3+36*x^2+33*x+31 y^2=5*x^6+56*x^5+111*x^4+33*x^3+72*x^2+22*x+102 y^2=x^6+65*x^5+111*x^4+46*x^3+68*x^2+47*x+44 y^2=30*x^6+59*x^5+47*x^4+87*x^3+47*x^2+22*x+84 y^2=45*x^6+51*x^5+17*x^4+44*x^3+7*x^2+11*x+89 y^2=85*x^6+35*x^5+19*x^4+17*x^3+57*x+21 y^2=49*x^6+27*x^5+102*x^4+100*x^3+93*x^2+61*x+46 y^2=29*x^6+97*x^5+34*x^4+40*x^3+65*x^2+36*x+79 y^2=76*x^6+54*x^5+6*x^4+53*x^3+61*x^2+51*x+39 y^2=78*x^6+110*x^5+20*x^4+101*x^3+54*x^2+69*x+3 y^2=88*x^6+100*x^5+61*x^4+63*x^3+50*x^2+61*x+23 y^2=86*x^6+93*x^5+19*x^4+99*x^3+111*x^2+66*x+24 y^2=91*x^6+45*x^5+97*x^4+101*x^3+24*x^2+45*x+7 y^2=17*x^6+98*x^5+2*x^4+4*x^3+13*x^2+49*x+77 y^2=50*x^6+51*x^5+57*x^4+44*x^3+41*x^2+83*x+50 y^2=103*x^6+4*x^5+9*x^4+108*x^3+16*x^2+84*x+61 y^2=81*x^6+32*x^5+85*x^4+91*x^3+47*x^2+87*x+76