Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 323 x^{2} - 2486 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.231098166577$, $\pm0.407352703579$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.47596608.1 |
Galois group: | $D_{4}$ |
Jacobians: | $120$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10585$ | $165136585$ | $2086591750720$ | $26586842387756425$ | $339456187302485186425$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12932$ | $1446110$ | $163062084$ | $18424321852$ | $2081952255134$ | $235260564356476$ | $26584441863184516$ | $3004041932897851070$ | $339456738935734366532$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=38 x^6+23 x^5+71 x^4+56 x^3+79 x^2+105 x+110$
- $y^2=26 x^6+52 x^5+68 x^4+83 x^3+13 x^2+50 x+104$
- $y^2=13 x^6+44 x^5+63 x^4+89 x^3+52 x^2+85 x+70$
- $y^2=91 x^6+63 x^5+83 x^4+93 x^3+13 x^2+15 x+101$
- $y^2=110 x^6+19 x^5+45 x^4+17 x^3+18 x^2+69 x+12$
- $y^2=74 x^6+111 x^5+80 x^4+11 x^3+104 x^2+67 x+80$
- $y^2=52 x^6+22 x^5+24 x^4+77 x^3+82 x^2+60 x+43$
- $y^2=67 x^6+25 x^5+90 x^4+25 x^3+91 x^2+58 x+63$
- $y^2=86 x^6+55 x^5+25 x^4+35 x^3+35 x^2+53 x+12$
- $y^2=21 x^6+48 x^5+34 x^4+36 x^3+81 x^2+8 x+93$
- $y^2=43 x^6+55 x^5+93 x^4+105 x^3+45 x^2+16 x+92$
- $y^2=107 x^6+55 x^5+11 x^4+13 x^3+78 x^2+80 x+79$
- $y^2=27 x^6+32 x^5+107 x^4+70 x^3+34 x^2+70 x+81$
- $y^2=66 x^6+41 x^5+27 x^4+64 x^3+70 x^2+111 x+18$
- $y^2=8 x^6+80 x^5+34 x^4+3 x^3+96 x^2+80 x+70$
- $y^2=94 x^6+41 x^5+58 x^4+32 x^3+49 x^2+29 x+43$
- $y^2=80 x^6+26 x^5+101 x^4+41 x^3+81 x^2+69 x+76$
- $y^2=9 x^6+94 x^5+55 x^4+61 x^3+93 x^2+11 x+10$
- $y^2=66 x^6+68 x^5+57 x^4+36 x^3+90 x^2+34 x+58$
- $y^2=74 x^6+68 x^5+108 x^4+100 x^3+59 x^2+81 x+59$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.47596608.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.w_ml | $2$ | (not in LMFDB) |