# Stored data for abelian variety isogeny class 2.113.aw_ml, downloaded from the LMFDB on 09 October 2025. {"abvar_count": 10585, "abvar_counts": [10585, 165136585, 2086591750720, 26586842387756425, 339456187302485186425, 4334524146426065817256960, 55347529303837415382450455065, 706732550928415228096105412553225, 9024267949888467725581591289846109760, 115230877628058530996435137069485500492425], "abvar_counts_str": "10585 165136585 2086591750720 26586842387756425 339456187302485186425 4334524146426065817256960 55347529303837415382450455065 706732550928415228096105412553225 9024267949888467725581591289846109760 115230877628058530996435137069485500492425 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.231098166577353, 0.407352703578893], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 92, "curve_counts": [92, 12932, 1446110, 163062084, 18424321852, 2081952255134, 235260564356476, 26584441863184516, 3004041932897851070, 339456738935734366532], "curve_counts_str": "92 12932 1446110 163062084 18424321852 2081952255134 235260564356476 26584441863184516 3004041932897851070 339456738935734366532 ", "curves": ["y^2=38*x^6+23*x^5+71*x^4+56*x^3+79*x^2+105*x+110", "y^2=26*x^6+52*x^5+68*x^4+83*x^3+13*x^2+50*x+104", "y^2=13*x^6+44*x^5+63*x^4+89*x^3+52*x^2+85*x+70", "y^2=91*x^6+63*x^5+83*x^4+93*x^3+13*x^2+15*x+101", "y^2=110*x^6+19*x^5+45*x^4+17*x^3+18*x^2+69*x+12", "y^2=74*x^6+111*x^5+80*x^4+11*x^3+104*x^2+67*x+80", "y^2=52*x^6+22*x^5+24*x^4+77*x^3+82*x^2+60*x+43", "y^2=67*x^6+25*x^5+90*x^4+25*x^3+91*x^2+58*x+63", "y^2=86*x^6+55*x^5+25*x^4+35*x^3+35*x^2+53*x+12", "y^2=21*x^6+48*x^5+34*x^4+36*x^3+81*x^2+8*x+93", "y^2=43*x^6+55*x^5+93*x^4+105*x^3+45*x^2+16*x+92", "y^2=107*x^6+55*x^5+11*x^4+13*x^3+78*x^2+80*x+79", "y^2=27*x^6+32*x^5+107*x^4+70*x^3+34*x^2+70*x+81", "y^2=66*x^6+41*x^5+27*x^4+64*x^3+70*x^2+111*x+18", "y^2=8*x^6+80*x^5+34*x^4+3*x^3+96*x^2+80*x+70", "y^2=94*x^6+41*x^5+58*x^4+32*x^3+49*x^2+29*x+43", "y^2=80*x^6+26*x^5+101*x^4+41*x^3+81*x^2+69*x+76", "y^2=9*x^6+94*x^5+55*x^4+61*x^3+93*x^2+11*x+10", "y^2=66*x^6+68*x^5+57*x^4+36*x^3+90*x^2+34*x+58", "y^2=74*x^6+68*x^5+108*x^4+100*x^3+59*x^2+81*x+59", "y^2=71*x^6+93*x^5+26*x^4+39*x^3+17*x^2+85*x+14", "y^2=21*x^6+26*x^5+17*x^4+2*x^3+64*x^2+3*x+13", "y^2=73*x^6+22*x^5+78*x^4+82*x^3+68*x^2+95*x+108", "y^2=44*x^6+93*x^5+24*x^4+91*x^3+105*x^2+90", "y^2=14*x^6+39*x^5+55*x^4+39*x^3+75*x^2+21*x+1", "y^2=13*x^6+106*x^5+65*x^4+59*x^3+3*x^2+57*x+101", "y^2=43*x^6+29*x^5+16*x^4+26*x^3+19*x^2+47*x+19", "y^2=40*x^6+110*x^5+76*x^4+87*x^3+46*x^2+87*x+98", "y^2=24*x^6+86*x^5+73*x^4+31*x^2+97*x+71", "y^2=83*x^6+59*x^5+2*x^4+79*x^3+77*x^2+95*x+3", "y^2=35*x^6+29*x^5+25*x^4+105*x^3+20*x^2+79*x+102", "y^2=77*x^6+45*x^5+73*x^4+74*x^3+54*x^2+89*x+74", "y^2=90*x^6+74*x^5+101*x^4+7*x^3+51*x^2+54*x+54", "y^2=103*x^6+61*x^5+106*x^4+48*x^3+69*x^2+69*x+83", "y^2=28*x^6+17*x^5+46*x^4+7*x^3+38*x^2+62*x+47", "y^2=96*x^6+5*x^5+72*x^4+101*x^3+32*x^2+61*x+8", "y^2=91*x^6+73*x^5+22*x^4+57*x^3+110*x^2+108*x+35", "y^2=76*x^6+109*x^5+15*x^4+43*x^3+88*x^2+73*x+52", "y^2=43*x^6+95*x^5+67*x^4+10*x^3+66*x^2+60*x+105", "y^2=95*x^6+33*x^5+53*x^4+30*x^3+66*x^2+39", "y^2=75*x^6+35*x^5+76*x^4+101*x^3+28*x^2+21*x+20", "y^2=75*x^6+43*x^5+71*x^4+8*x^3+43*x^2+58*x+47", "y^2=74*x^6+97*x^5+80*x^4+50*x^3+73*x^2+94*x+64", "y^2=24*x^6+80*x^5+65*x^4+82*x^2+8*x+78", "y^2=34*x^6+40*x^5+11*x^4+31*x^3+70*x^2+5*x+16", "y^2=53*x^6+25*x^5+68*x^4+21*x^3+26*x^2+91*x+32", "y^2=x^6+26*x^5+91*x^4+81*x^3+20*x^2+21*x+66", "y^2=28*x^6+70*x^5+8*x^4+37*x^3+3*x^2+80*x+82", "y^2=24*x^6+82*x^5+55*x^4+83*x^3+39*x^2+76*x+58", "y^2=74*x^6+63*x^5+51*x^4+24*x^3+58*x^2+100*x+40", "y^2=20*x^6+17*x^5+4*x^4+60*x^3+21*x^2+42*x+15", "y^2=42*x^6+48*x^5+45*x^4+93*x^3+96*x^2+39*x+2", "y^2=66*x^6+27*x^5+31*x^4+19*x^3+111*x^2+83*x+98", "y^2=86*x^6+9*x^5+38*x^4+88*x^3+88*x^2+17*x+90", "y^2=24*x^6+84*x^5+17*x^4+112*x^3+90*x^2+96*x+43", "y^2=18*x^6+28*x^5+65*x^4+98*x^3+58*x^2+108*x+56", "y^2=54*x^6+50*x^5+54*x^4+58*x^3+8*x^2+4*x+33", "y^2=34*x^6+32*x^5+106*x^4+112*x^3+46*x^2+9*x+33", "y^2=71*x^6+68*x^5+74*x^4+93*x^3+92*x^2+98*x+65", "y^2=25*x^6+71*x^5+53*x^4+38*x^3+92*x^2+20*x+92", "y^2=73*x^6+11*x^5+84*x^4+x^3+82*x^2+109*x+28", "y^2=94*x^6+4*x^5+106*x^4+94*x^3+75*x^2+50*x+31", "y^2=98*x^6+37*x^5+10*x^4+42*x^3+18*x^2+41*x+53", "y^2=55*x^6+6*x^5+33*x^4+83*x^3+94*x^2+90*x+100", "y^2=9*x^6+7*x^5+12*x^4+6*x^3+6*x^2+64*x+17", "y^2=105*x^6+36*x^5+49*x^4+87*x^3+37*x^2+112*x+17", "y^2=68*x^6+5*x^5+6*x^4+105*x^3+84*x^2+88*x+35", "y^2=33*x^6+71*x^5+52*x^4+68*x^3+50*x^2+5*x+63", "y^2=17*x^6+22*x^5+11*x^4+72*x^3+55*x^2+21*x+41", "y^2=72*x^6+84*x^5+86*x^4+29*x^3+8*x^2+100*x+110", "y^2=10*x^6+106*x^5+71*x^4+87*x^3+3*x^2+110*x+59", "y^2=87*x^6+17*x^5+25*x^4+65*x^3+33*x^2+60*x+37", "y^2=110*x^6+71*x^5+58*x^4+63*x^3+87*x^2+107*x+1", "y^2=20*x^6+21*x^5+34*x^4+48*x^3+69*x^2+70*x+68", "y^2=25*x^6+87*x^5+10*x^4+82*x^3+57*x^2+34*x+106", "y^2=94*x^6+105*x^5+51*x^4+40*x^3+66*x^2+23*x+112", "y^2=35*x^6+14*x^5+4*x^4+29*x^3+53*x^2+28*x+50", "y^2=109*x^6+22*x^5+8*x^4+73*x^3+99*x^2+26*x+96", "y^2=8*x^6+60*x^5+7*x^4+13*x^3+39*x^2+112*x+68", "y^2=62*x^6+8*x^5+88*x^4+101*x^3+96*x^2+59*x+27", "y^2=65*x^6+57*x^5+83*x^3+15*x^2+89*x+82", "y^2=43*x^6+103*x^5+54*x^4+21*x^3+79*x^2+22*x+26", "y^2=73*x^6+8*x^5+99*x^4+102*x^3+107*x^2+102*x+84", "y^2=15*x^6+69*x^5+38*x^4+33*x^3+31*x^2+85*x+111", "y^2=3*x^6+102*x^5+46*x^4+24*x^3+64*x^2+5*x+104", "y^2=3*x^6+77*x^5+33*x^4+39*x^3+98*x^2+39*x+67", "y^2=39*x^6+73*x^5+32*x^4+47*x^3+109*x^2+25*x+105", "y^2=49*x^6+63*x^5+32*x^4+58*x^3+x^2+88*x+69", "y^2=99*x^6+97*x^5+19*x^4+52*x^3+50*x^2+51*x+20", "y^2=26*x^6+76*x^5+78*x^4+29*x^3+34*x^2+9*x+110", "y^2=97*x^6+81*x^5+6*x^4+4*x^3+56*x^2+x+109", "y^2=44*x^6+58*x^5+102*x^4+79*x^3+79*x^2+8*x+70", "y^2=87*x^6+42*x^5+26*x^4+6*x^3+103*x^2+92", "y^2=107*x^6+93*x^5+43*x^4+7*x^3+60*x^2+31*x+47", "y^2=109*x^6+59*x^5+52*x^4+14*x^3+39*x^2+103*x+94", "y^2=6*x^6+8*x^5+15*x^4+80*x^3+38*x^2+88*x+107", "y^2=69*x^6+57*x^5+97*x^4+90*x^3+69*x^2+65*x+47", "y^2=112*x^6+102*x^5+71*x^4+50*x^3+58*x^2+12*x+46", "y^2=97*x^6+50*x^5+x^4+85*x^3+64*x^2+39*x+96", "y^2=23*x^6+30*x^5+32*x^4+103*x^3+92*x^2+68*x+77", "y^2=105*x^6+51*x^5+12*x^4+82*x^3+99*x^2+20*x+33", "y^2=85*x^6+46*x^5+105*x^4+64*x^3+74*x^2+34*x+14", "y^2=38*x^6+67*x^5+27*x^4+77*x^3+89*x^2+19*x+10", "y^2=12*x^6+73*x^5+44*x^4+47*x^3+14*x^2+43*x+50", "y^2=71*x^6+10*x^5+46*x^4+69*x^3+97*x^2+12*x+29", "y^2=42*x^6+107*x^5+9*x^4+95*x^3+22*x^2+74*x+63", "y^2=34*x^6+49*x^5+74*x^4+7*x^3+x^2+87*x+43", "y^2=97*x^6+55*x^5+13*x^4+77*x^3+65*x^2+78*x+83", "y^2=47*x^6+60*x^5+87*x^4+110*x^3+97*x^2+5*x+6", "y^2=68*x^6+94*x^5+98*x^4+98*x^3+30*x^2+43*x+77", "y^2=63*x^6+71*x^5+54*x^4+94*x^3+83*x^2+45*x+30", "y^2=16*x^6+84*x^5+88*x^4+90*x^3+7*x^2+61*x+35", "y^2=44*x^6+50*x^5+3*x^4+94*x^3+35*x^2+33*x+89", "y^2=2*x^6+98*x^5+36*x^4+61*x^3+57*x^2+34*x+82", "y^2=78*x^6+41*x^5+104*x^4+4*x^3+88*x^2+74*x+60", "y^2=38*x^6+52*x^5+70*x^4+44*x^3+103*x^2+53*x+12", "y^2=109*x^6+39*x^5+46*x^4+104*x^3+29*x^2+48*x+27", "y^2=14*x^6+22*x^5+44*x^4+108*x^3+93*x^2+98*x+68", "y^2=45*x^6+40*x^5+40*x^4+95*x^3+4*x^2+41*x+4", "y^2=52*x^6+78*x^5+30*x^4+23*x^3+75*x^2+33*x+69"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 2, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.47596608.1"], "geometric_splitting_field": "4.0.47596608.1", "geometric_splitting_polynomials": [[5203, -154, 155, -2, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 120, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 120, "label": "2.113.aw_ml", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.47596608.1"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -22, 323, -2486, 12769], "poly_str": "1 -22 323 -2486 12769 ", "primitive_models": [], "q": 113, "real_poly": [1, -22, 97], "simple_distinct": ["2.113.aw_ml"], "simple_factors": ["2.113.aw_mlA"], "simple_multiplicities": [1], "singular_primes": ["2,F^2+24*F+9*V-194"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.47596608.1", "splitting_polynomials": [[5203, -154, 155, -2, 1]], "twist_count": 2, "twists": [["2.113.w_ml", "2.12769.gg_behv", 2]], "weak_equivalence_count": 2, "zfv_index": 4, "zfv_index_factorization": [[2, 2]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 82633, "zfv_singular_count": 2, "zfv_singular_primes": ["2,F^2+24*F+9*V-194"]}