Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 22 x + 261 x^{2} - 2486 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0973556696352$, $\pm0.474124061097$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2177500736.1 |
Galois group: | $D_{4}$ |
Jacobians: | $46$ |
Isomorphism classes: | 46 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10523$ | $163516897$ | $2080684041164$ | $26579079185632169$ | $339454553865309459523$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $92$ | $12808$ | $1442018$ | $163014468$ | $18424233192$ | $2081955055798$ | $235260581132312$ | $26584441920036036$ | $3004041938875964354$ | $339456739054273113768$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 46 curves (of which all are hyperelliptic):
- $y^2=35 x^6+31 x^5+111 x^4+107 x^3+65 x^2+84 x+30$
- $y^2=77 x^6+46 x^5+4 x^4+6 x^3+82 x^2+110 x+3$
- $y^2=43 x^6+62 x^5+60 x^4+50 x^3+x^2+70 x+34$
- $y^2=104 x^6+65 x^5+105 x^4+40 x^3+107 x^2+13 x+38$
- $y^2=96 x^6+x^5+12 x^4+37 x^3+6 x^2+14 x+62$
- $y^2=101 x^6+27 x^5+34 x^4+93 x^3+98 x^2+34 x+38$
- $y^2=18 x^6+73 x^5+55 x^4+107 x^3+25 x^2+101 x+84$
- $y^2=40 x^6+97 x^5+43 x^4+35 x^3+56 x^2+78 x+30$
- $y^2=43 x^6+13 x^5+102 x^4+50 x^3+53 x^2+106 x+42$
- $y^2=86 x^6+92 x^5+35 x^4+15 x^3+17 x^2+83 x+72$
- $y^2=47 x^6+24 x^5+105 x^4+39 x^3+26 x^2+74 x+29$
- $y^2=112 x^6+90 x^5+24 x^4+101 x^3+36 x^2+32 x+68$
- $y^2=9 x^6+23 x^5+68 x^4+87 x^3+86 x^2+96 x+38$
- $y^2=110 x^6+80 x^5+46 x^4+76 x^3+74 x^2+71 x+47$
- $y^2=49 x^6+18 x^5+x^4+14 x^3+55 x^2+87 x+18$
- $y^2=65 x^6+106 x^5+13 x^4+26 x^3+42 x^2+86 x+51$
- $y^2=70 x^6+40 x^5+63 x^4+35 x^3+7 x^2+109 x+68$
- $y^2=110 x^6+32 x^5+53 x^4+33 x^3+20 x^2+8 x+23$
- $y^2=112 x^6+57 x^5+15 x^4+105 x^3+73 x^2+69 x+54$
- $y^2=19 x^6+8 x^5+108 x^4+94 x^3+107 x^2+17 x+63$
- and 26 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.2177500736.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.w_kb | $2$ | (not in LMFDB) |