-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10523, 'abvar_counts': [10523, 163516897, 2080684041164, 26579079185632169, 339454553865309459523, 4334529977275818364233616, 55347533250530364047517587171, 706732552439781160088325136298825, 9024267967846970727505953911805497996, 115230877668297307577581565941286404070977], 'abvar_counts_str': '10523 163516897 2080684041164 26579079185632169 339454553865309459523 4334529977275818364233616 55347533250530364047517587171 706732552439781160088325136298825 9024267967846970727505953911805497996 115230877668297307577581565941286404070977 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.0973556696352155, 0.474124061096612], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 92, 'curve_counts': [92, 12808, 1442018, 163014468, 18424233192, 2081955055798, 235260581132312, 26584441920036036, 3004041938875964354, 339456739054273113768], 'curve_counts_str': '92 12808 1442018 163014468 18424233192 2081955055798 235260581132312 26584441920036036 3004041938875964354 339456739054273113768 ', 'curves': ['y^2=35*x^6+31*x^5+111*x^4+107*x^3+65*x^2+84*x+30', 'y^2=77*x^6+46*x^5+4*x^4+6*x^3+82*x^2+110*x+3', 'y^2=43*x^6+62*x^5+60*x^4+50*x^3+x^2+70*x+34', 'y^2=104*x^6+65*x^5+105*x^4+40*x^3+107*x^2+13*x+38', 'y^2=96*x^6+x^5+12*x^4+37*x^3+6*x^2+14*x+62', 'y^2=101*x^6+27*x^5+34*x^4+93*x^3+98*x^2+34*x+38', 'y^2=18*x^6+73*x^5+55*x^4+107*x^3+25*x^2+101*x+84', 'y^2=40*x^6+97*x^5+43*x^4+35*x^3+56*x^2+78*x+30', 'y^2=43*x^6+13*x^5+102*x^4+50*x^3+53*x^2+106*x+42', 'y^2=86*x^6+92*x^5+35*x^4+15*x^3+17*x^2+83*x+72', 'y^2=47*x^6+24*x^5+105*x^4+39*x^3+26*x^2+74*x+29', 'y^2=112*x^6+90*x^5+24*x^4+101*x^3+36*x^2+32*x+68', 'y^2=9*x^6+23*x^5+68*x^4+87*x^3+86*x^2+96*x+38', 'y^2=110*x^6+80*x^5+46*x^4+76*x^3+74*x^2+71*x+47', 'y^2=49*x^6+18*x^5+x^4+14*x^3+55*x^2+87*x+18', 'y^2=65*x^6+106*x^5+13*x^4+26*x^3+42*x^2+86*x+51', 'y^2=70*x^6+40*x^5+63*x^4+35*x^3+7*x^2+109*x+68', 'y^2=110*x^6+32*x^5+53*x^4+33*x^3+20*x^2+8*x+23', 'y^2=112*x^6+57*x^5+15*x^4+105*x^3+73*x^2+69*x+54', 'y^2=19*x^6+8*x^5+108*x^4+94*x^3+107*x^2+17*x+63', 'y^2=34*x^6+98*x^5+4*x^4+55*x^2+20*x+7', 'y^2=44*x^6+9*x^5+90*x^4+78*x^3+89*x^2+59*x+1', 'y^2=101*x^6+103*x^5+57*x^4+37*x^3+32*x^2+45*x+110', 'y^2=90*x^6+76*x^5+96*x^4+81*x^3+52*x^2+35*x+61', 'y^2=6*x^6+89*x^5+89*x^4+42*x^3+52*x^2+85*x+107', 'y^2=42*x^6+90*x^5+2*x^4+9*x^3+107*x^2+68*x+69', 'y^2=12*x^6+84*x^5+2*x^4+x^3+100*x^2+38*x+48', 'y^2=55*x^6+103*x^5+74*x^4+25*x^3+46*x^2+88*x+99', 'y^2=40*x^6+5*x^5+56*x^4+52*x^3+37*x^2+70*x+70', 'y^2=10*x^6+30*x^5+18*x^4+78*x^3+48*x^2+21*x+58', 'y^2=108*x^6+22*x^5+23*x^4+97*x^3+66*x^2+60*x+28', 'y^2=65*x^6+66*x^5+103*x^4+79*x^3+27*x^2+68*x+72', 'y^2=84*x^6+97*x^5+83*x^4+93*x^3+109*x^2+10*x+39', 'y^2=48*x^6+102*x^5+38*x^4+34*x^3+102*x^2+56*x+20', 'y^2=17*x^6+94*x^5+48*x^4+84*x^3+73*x^2+58*x+111', 'y^2=92*x^6+48*x^5+112*x^4+40*x^3+23*x^2+33*x+29', 'y^2=46*x^6+2*x^5+86*x^4+18*x^3+24*x^2+8*x+36', 'y^2=51*x^6+53*x^5+52*x^4+31*x^3+36*x^2+72*x+33', 'y^2=4*x^6+57*x^5+33*x^4+37*x^3+76*x^2+66*x+109', 'y^2=90*x^6+35*x^5+38*x^4+80*x^3+106*x^2+81*x+6', 'y^2=56*x^6+102*x^5+85*x^4+15*x^3+100*x^2+104*x+105', 'y^2=107*x^6+65*x^5+38*x^4+23*x^3+103*x^2+90*x+55', 'y^2=31*x^6+101*x^5+68*x^4+82*x^3+58*x^2+9*x+14', 'y^2=60*x^6+52*x^5+46*x^4+101*x^3+5*x^2+61*x+72', 'y^2=44*x^6+61*x^4+98*x^3+17*x^2+59*x+7', 'y^2=71*x^6+13*x^5+35*x^4+42*x^3+26*x^2+8*x+24'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 1, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.2177500736.1'], 'geometric_splitting_field': '4.0.2177500736.1', 'geometric_splitting_polynomials': [[3793, 866, 81, -2, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 46, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 46, 'label': '2.113.aw_kb', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.2177500736.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 7, 1, 46]], 'poly': [1, -22, 261, -2486, 12769], 'poly_str': '1 -22 261 -2486 12769 ', 'primitive_models': [], 'principal_polarization_count': 46, 'q': 113, 'real_poly': [1, -22, 35], 'simple_distinct': ['2.113.aw_kb'], 'simple_factors': ['2.113.aw_kbA'], 'simple_multiplicities': [1], 'singular_primes': [], 'size': 46, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.2177500736.1', 'splitting_polynomials': [[3793, 866, 81, -2, 1]], 'twist_count': 2, 'twists': [['2.113.w_kb', '2.12769.bm_axgv', 2]], 'weak_equivalence_count': 1, 'zfv_index': 1, 'zfv_index_factorization': [], 'zfv_is_bass': True, 'zfv_is_maximal': True, 'zfv_pic_size': 46, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 18401, 'zfv_singular_count': 0, 'zfv_singular_primes': []}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.aw_kb', 'extension_degree': 1, 'extension_label': '2.113.aw_kb', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.2177500736.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.aw_kb', 'galois_group': '4T3', 'places': [['1496/113', '105/113', '4/113', '1/113'], ['107', '1', '0', '0']]}