Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 20 x + 219 x^{2} - 2260 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0937886839908$, $\pm0.505151810104$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.3155344400.1 |
Galois group: | $D_{4}$ |
Jacobians: | $80$ |
Isomorphism classes: | 80 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10709$ | $163515721$ | $2079588463316$ | $26578695736604921$ | $339456656118907619389$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $94$ | $12808$ | $1441258$ | $163012116$ | $18424347294$ | $2081955189862$ | $235260559060558$ | $26584441836507108$ | $3004041941546326954$ | $339456739064738819928$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 80 curves (of which all are hyperelliptic):
- $y^2=22 x^6+45 x^5+82 x^4+90 x^3+36 x^2+22 x+111$
- $y^2=24 x^6+66 x^5+37 x^4+76 x^3+14 x^2+14 x+35$
- $y^2=60 x^6+99 x^5+99 x^4+19 x^3+103 x^2+52 x+44$
- $y^2=69 x^6+49 x^5+105 x^4+45 x^3+5 x^2+105 x+37$
- $y^2=102 x^6+7 x^5+108 x^4+31 x^3+97 x^2+6 x+19$
- $y^2=111 x^6+54 x^5+54 x^4+34 x^3+105 x^2+86 x+74$
- $y^2=54 x^6+82 x^5+111 x^4+16 x^3+89 x^2+44 x+10$
- $y^2=28 x^6+7 x^5+8 x^4+110 x^3+86 x^2+33 x+83$
- $y^2=30 x^6+66 x^5+64 x^4+28 x^3+108 x^2+32 x+35$
- $y^2=97 x^6+46 x^5+53 x^4+79 x^3+27 x^2+65 x+23$
- $y^2=74 x^6+19 x^5+6 x^4+72 x^2+102 x+35$
- $y^2=3 x^6+53 x^5+90 x^4+50 x^3+62 x^2+51 x+49$
- $y^2=59 x^6+27 x^5+108 x^4+61 x^3+74 x^2+30 x+90$
- $y^2=34 x^6+25 x^5+37 x^4+52 x^3+48 x^2+49 x+59$
- $y^2=93 x^6+100 x^5+109 x^4+37 x^3+61 x^2+67 x+63$
- $y^2=73 x^6+101 x^5+93 x^4+12 x^3+x^2+99 x+93$
- $y^2=88 x^6+111 x^5+84 x^4+15 x^3+42 x^2+106 x+54$
- $y^2=20 x^6+39 x^5+92 x^4+90 x^3+101 x^2+85 x+57$
- $y^2=90 x^6+18 x^5+85 x^4+40 x^3+44 x^2+108 x+54$
- $y^2=80 x^6+93 x^5+84 x^4+98 x^3+39 x^2+51 x+81$
- and 60 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.3155344400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.u_il | $2$ | (not in LMFDB) |