-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10709, 'abvar_counts': [10709, 163515721, 2079588463316, 26578695736604921, 339456656118907619389, 4334530256390299151354896, 55347528057917097771612181421, 706732550219211214654337421610025, 9024267975868851976497974424853663124, 115230877671849962062290499806681293527321], 'abvar_counts_str': '10709 163515721 2079588463316 26578695736604921 339456656118907619389 4334530256390299151354896 55347528057917097771612181421 706732550219211214654337421610025 9024267975868851976497974424853663124 115230877671849962062290499806681293527321 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.0937886839908403, 0.50515181010356], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 94, 'curve_counts': [94, 12808, 1441258, 163012116, 18424347294, 2081955189862, 235260559060558, 26584441836507108, 3004041941546326954, 339456739064738819928], 'curve_counts_str': '94 12808 1441258 163012116 18424347294 2081955189862 235260559060558 26584441836507108 3004041941546326954 339456739064738819928 ', 'curves': ['y^2=22*x^6+45*x^5+82*x^4+90*x^3+36*x^2+22*x+111', 'y^2=24*x^6+66*x^5+37*x^4+76*x^3+14*x^2+14*x+35', 'y^2=60*x^6+99*x^5+99*x^4+19*x^3+103*x^2+52*x+44', 'y^2=69*x^6+49*x^5+105*x^4+45*x^3+5*x^2+105*x+37', 'y^2=102*x^6+7*x^5+108*x^4+31*x^3+97*x^2+6*x+19', 'y^2=111*x^6+54*x^5+54*x^4+34*x^3+105*x^2+86*x+74', 'y^2=54*x^6+82*x^5+111*x^4+16*x^3+89*x^2+44*x+10', 'y^2=28*x^6+7*x^5+8*x^4+110*x^3+86*x^2+33*x+83', 'y^2=30*x^6+66*x^5+64*x^4+28*x^3+108*x^2+32*x+35', 'y^2=97*x^6+46*x^5+53*x^4+79*x^3+27*x^2+65*x+23', 'y^2=74*x^6+19*x^5+6*x^4+72*x^2+102*x+35', 'y^2=3*x^6+53*x^5+90*x^4+50*x^3+62*x^2+51*x+49', 'y^2=59*x^6+27*x^5+108*x^4+61*x^3+74*x^2+30*x+90', 'y^2=34*x^6+25*x^5+37*x^4+52*x^3+48*x^2+49*x+59', 'y^2=93*x^6+100*x^5+109*x^4+37*x^3+61*x^2+67*x+63', 'y^2=73*x^6+101*x^5+93*x^4+12*x^3+x^2+99*x+93', 'y^2=88*x^6+111*x^5+84*x^4+15*x^3+42*x^2+106*x+54', 'y^2=20*x^6+39*x^5+92*x^4+90*x^3+101*x^2+85*x+57', 'y^2=90*x^6+18*x^5+85*x^4+40*x^3+44*x^2+108*x+54', 'y^2=80*x^6+93*x^5+84*x^4+98*x^3+39*x^2+51*x+81', 'y^2=97*x^6+111*x^5+28*x^4+111*x^3+33*x^2+50*x+55', 'y^2=46*x^6+9*x^5+106*x^4+55*x^3+13*x^2+27*x+71', 'y^2=26*x^6+64*x^5+81*x^4+20*x^3+50*x^2+8*x+1', 'y^2=79*x^6+89*x^5+59*x^4+68*x^2+28*x+67', 'y^2=39*x^6+80*x^5+29*x^4+38*x^3+4*x^2+77*x+80', 'y^2=x^6+68*x^5+100*x^4+53*x^3+16*x^2+44*x+9', 'y^2=13*x^6+96*x^5+63*x^4+94*x^3+72*x^2+26*x+51', 'y^2=64*x^6+22*x^5+63*x^4+44*x^3+6*x^2+42*x+14', 'y^2=95*x^6+97*x^5+105*x^4+26*x^3+57*x^2+7*x+72', 'y^2=98*x^6+48*x^5+106*x^4+19*x^3+x^2+36*x+12', 'y^2=6*x^6+40*x^5+56*x^4+72*x^3+58*x^2+10*x+73', 'y^2=25*x^6+40*x^5+81*x^4+23*x^3+86*x^2+86*x+85', 'y^2=73*x^6+72*x^5+27*x^4+87*x^3+106*x^2+100*x+65', 'y^2=8*x^6+110*x^5+100*x^4+92*x^3+5*x^2+62*x+50', 'y^2=51*x^6+8*x^5+82*x^4+24*x^3+111*x^2+35*x+88', 'y^2=36*x^6+82*x^5+22*x^4+94*x^3+38*x^2+62*x+44', 'y^2=36*x^6+44*x^5+66*x^4+86*x^3+45*x^2+103*x+59', 'y^2=42*x^6+74*x^5+93*x^4+107*x^3+24*x^2+58*x+92', 'y^2=86*x^6+69*x^5+48*x^4+93*x^3+99*x^2+61*x+55', 'y^2=95*x^6+52*x^5+61*x^4+83*x^3+87*x^2+80*x+92', 'y^2=30*x^6+97*x^5+64*x^4+7*x^3+50*x^2+102*x+76', 'y^2=105*x^6+9*x^5+38*x^4+48*x^3+107*x^2+46*x+89', 'y^2=69*x^6+11*x^4+57*x^3+43*x^2+91*x+10', 'y^2=76*x^6+37*x^5+97*x^4+52*x^3+94*x^2+90*x+10', 'y^2=94*x^6+77*x^5+2*x^4+71*x^3+112*x^2+11*x+87', 'y^2=36*x^6+33*x^5+106*x^4+73*x^3+57*x^2+48*x+38', 'y^2=8*x^6+30*x^5+85*x^4+81*x^3+80*x^2+19*x+71', 'y^2=96*x^6+33*x^5+14*x^4+29*x^3+34*x^2+29*x+36', 'y^2=111*x^6+84*x^4+35*x^3+83*x^2+86*x+70', 'y^2=106*x^6+22*x^5+46*x^4+27*x^3+29*x^2+69*x+83', 'y^2=27*x^6+27*x^5+75*x^4+47*x^3+5*x^2+45*x+28', 'y^2=5*x^6+72*x^5+14*x^4+111*x^3+53*x^2+106*x+89', 'y^2=20*x^6+21*x^4+7*x^3+59*x^2+69*x+103', 'y^2=47*x^6+24*x^5+64*x^4+70*x^3+87*x^2+101*x+9', 'y^2=93*x^6+37*x^5+81*x^4+23*x^3+41*x^2+18*x+52', 'y^2=80*x^6+95*x^5+72*x^4+71*x^3+101*x^2+59*x+86', 'y^2=67*x^6+61*x^5+38*x^4+103*x^3+18*x^2+34*x+67', 'y^2=48*x^6+45*x^5+101*x^4+70*x^3+6*x^2+62*x+102', 'y^2=44*x^6+4*x^5+22*x^4+53*x^3+98*x^2+27*x+41', 'y^2=29*x^6+71*x^5+16*x^4+63*x^3+91*x^2+89*x+25', 'y^2=35*x^6+73*x^5+27*x^4+7*x^3+4*x^2+104*x+88', 'y^2=46*x^6+67*x^5+41*x^4+93*x^3+110*x^2+43*x+28', 'y^2=101*x^6+82*x^5+78*x^4+106*x^3+35*x^2+74*x+31', 'y^2=71*x^6+78*x^5+40*x^4+97*x^3+20*x^2+98*x+94', 'y^2=23*x^6+20*x^5+90*x^4+32*x^3+34*x^2+19*x+26', 'y^2=x^6+95*x^5+24*x^4+42*x^3+30*x^2+73*x+45', 'y^2=48*x^6+5*x^5+6*x^4+27*x^3+59*x^2+48*x+43', 'y^2=86*x^6+55*x^5+80*x^4+98*x^3+56*x^2+99*x+78', 'y^2=12*x^6+79*x^5+82*x^4+99*x^3+77*x^2+65*x+66', 'y^2=63*x^6+66*x^5+81*x^4+80*x^3+74*x^2+90*x+78', 'y^2=65*x^6+73*x^5+79*x^4+59*x^3+42*x^2+63*x+33', 'y^2=64*x^6+56*x^5+74*x^4+71*x^3+46*x^2+103*x+1', 'y^2=92*x^6+83*x^5+39*x^4+84*x^3+71*x^2+6*x+18', 'y^2=35*x^6+78*x^5+104*x^4+31*x^3+74*x^2+96*x+5', 'y^2=27*x^6+76*x^5+79*x^4+103*x^3+95*x^2+54*x+71', 'y^2=51*x^6+96*x^5+106*x^4+51*x^3+53*x^2+83*x+46', 'y^2=23*x^6+32*x^5+42*x^4+61*x^3+106*x^2+21*x+99', 'y^2=71*x^6+89*x^5+37*x^4+22*x^3+102*x^2+106*x+67', 'y^2=14*x^6+65*x^5+109*x^4+74*x^3+15*x^2+109*x+12', 'y^2=45*x^6+88*x^5+20*x^4+39*x^3+76*x^2+56*x+74'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 1, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.3155344400.1'], 'geometric_splitting_field': '4.0.3155344400.1', 'geometric_splitting_polynomials': [[5069, -1070, 69, 0, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 80, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 80, 'label': '2.113.au_il', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.3155344400.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 7, 1, 40], [1, 13, 1, 20]], 'poly': [1, -20, 219, -2260, 12769], 'poly_str': '1 -20 219 -2260 12769 ', 'primitive_models': [], 'principal_polarization_count': 80, 'q': 113, 'real_poly': [1, -20, -7], 'simple_distinct': ['2.113.au_il'], 'simple_factors': ['2.113.au_ilA'], 'simple_multiplicities': [1], 'singular_primes': [], 'size': 80, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.3155344400.1', 'splitting_polynomials': [[5069, -1070, 69, 0, 1]], 'twist_count': 2, 'twists': [['2.113.u_il', '2.12769.bm_azab', 2]], 'weak_equivalence_count': 1, 'zfv_index': 1, 'zfv_index_factorization': [], 'zfv_is_bass': True, 'zfv_is_maximal': True, 'zfv_pic_size': 80, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 17225, 'zfv_singular_count': 0, 'zfv_singular_primes': []}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.au_il', 'extension_degree': 1, 'extension_label': '2.113.au_il', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.3155344400.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.au_il', 'galois_group': '4T3', 'places': [['11229/113', '94/113', '12764/113', '1/113'], ['5', '1', '0', '0']]}