Invariants
| Base field: | $\F_{113}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 18 x + 113 x^{2} )^{2}$ |
| $1 - 36 x + 550 x^{2} - 4068 x^{3} + 12769 x^{4}$ | |
| Frobenius angles: | $\pm0.178616545187$, $\pm0.178616545187$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $46$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $9216$ | $160579584$ | $2082733876224$ | $26589638502383616$ | $339466183491188745216$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $78$ | $12574$ | $1443438$ | $163079230$ | $18424864398$ | $2081957378398$ | $235260591384750$ | $26584442073469054$ | $3004041935686141134$ | $339456738934538291614$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 46 curves (of which all are hyperelliptic):
- $y^2=47 x^6+93 x^5+42 x^4+61 x^3+12 x^2+86 x+94$
- $y^2=59 x^6+68 x^4+68 x^2+59$
- $y^2=21 x^6+110 x^5+31 x^4+45 x^3+31 x^2+110 x+21$
- $y^2=61 x^6+89 x^5+89 x^4+112 x^3+89 x^2+89 x+61$
- $y^2=20 x^6+6 x^5+92 x^4+84 x^3+78 x^2+92 x+34$
- $y^2=10 x^6+102 x^5+10 x^4+45 x^3+103 x^2+102 x+103$
- $y^2=47 x^6+15 x^4+15 x^2+47$
- $y^2=92 x^6+78 x^5+10 x^4+36 x^3+10 x^2+78 x+92$
- $y^2=67 x^6+34 x^5+62 x^4+100 x^3+62 x^2+34 x+67$
- $y^2=32 x^6+81 x^5+109 x^4+20 x^3+109 x^2+81 x+32$
- $y^2=8 x^6+57 x^5+87 x^4+22 x^3+87 x^2+57 x+8$
- $y^2=108 x^6+33 x^5+57 x^4+53 x^3+57 x^2+33 x+108$
- $y^2=52 x^6+90 x^5+15 x^4+88 x^3+15 x^2+90 x+52$
- $y^2=103 x^6+69 x^5+54 x^4+47 x^3+34 x^2+52 x+55$
- $y^2=102 x^6+71 x^5+94 x^4+92 x^3+94 x^2+71 x+102$
- $y^2=108 x^6+31 x^5+58 x^4+85 x^3+58 x^2+31 x+108$
- $y^2=30 x^6+100 x^4+100 x^2+30$
- $y^2=7 x^6+101 x^5+56 x^4+37 x^3+55 x^2+2 x+75$
- $y^2=43 x^6+22 x^5+94 x^4+94 x^3+101 x^2+24 x$
- $y^2=97 x^6+78 x^5+21 x^4+88 x^3+107 x^2+94 x+32$
- and 26 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$| The isogeny class factors as 1.113.as 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
Base change
This is a primitive isogeny class.