# Stored data for abelian variety isogeny class 2.113.abk_ve, downloaded from the LMFDB on 29 October 2025. {"abvar_count": 9216, "abvar_counts": [9216, 160579584, 2082733876224, 26589638502383616, 339466183491188745216, 4334534812822949426774016, 55347535662524742615108166656, 706732556518712387337796498489344, 9024267958264608008618500785583727616, 115230877627652515305272763087380269645824], "abvar_counts_str": "9216 160579584 2082733876224 26589638502383616 339466183491188745216 4334534812822949426774016 55347535662524742615108166656 706732556518712387337796498489344 9024267958264608008618500785583727616 115230877627652515305272763087380269645824 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.17861654518743, 0.17861654518743], "center_dim": 2, "curve_count": 78, "curve_counts": [78, 12574, 1443438, 163079230, 18424864398, 2081957378398, 235260591384750, 26584442073469054, 3004041935686141134, 339456738934538291614], "curve_counts_str": "78 12574 1443438 163079230 18424864398 2081957378398 235260591384750 26584442073469054 3004041935686141134 339456738934538291614 ", "curves": ["y^2=47*x^6+93*x^5+42*x^4+61*x^3+12*x^2+86*x+94", "y^2=59*x^6+68*x^4+68*x^2+59", "y^2=21*x^6+110*x^5+31*x^4+45*x^3+31*x^2+110*x+21", "y^2=61*x^6+89*x^5+89*x^4+112*x^3+89*x^2+89*x+61", "y^2=20*x^6+6*x^5+92*x^4+84*x^3+78*x^2+92*x+34", "y^2=10*x^6+102*x^5+10*x^4+45*x^3+103*x^2+102*x+103", "y^2=47*x^6+15*x^4+15*x^2+47", "y^2=92*x^6+78*x^5+10*x^4+36*x^3+10*x^2+78*x+92", "y^2=67*x^6+34*x^5+62*x^4+100*x^3+62*x^2+34*x+67", "y^2=32*x^6+81*x^5+109*x^4+20*x^3+109*x^2+81*x+32", "y^2=8*x^6+57*x^5+87*x^4+22*x^3+87*x^2+57*x+8", "y^2=108*x^6+33*x^5+57*x^4+53*x^3+57*x^2+33*x+108", "y^2=52*x^6+90*x^5+15*x^4+88*x^3+15*x^2+90*x+52", "y^2=103*x^6+69*x^5+54*x^4+47*x^3+34*x^2+52*x+55", "y^2=102*x^6+71*x^5+94*x^4+92*x^3+94*x^2+71*x+102", "y^2=108*x^6+31*x^5+58*x^4+85*x^3+58*x^2+31*x+108", "y^2=30*x^6+100*x^4+100*x^2+30", "y^2=7*x^6+101*x^5+56*x^4+37*x^3+55*x^2+2*x+75", "y^2=43*x^6+22*x^5+94*x^4+94*x^3+101*x^2+24*x", "y^2=97*x^6+78*x^5+21*x^4+88*x^3+107*x^2+94*x+32", "y^2=40*x^6+35*x^5+100*x^4+7*x^3+81*x^2+75*x+21", "y^2=46*x^6+20*x^4+20*x^2+46", "y^2=107*x^6+65*x^5+40*x^4+63*x^3+107*x^2+17*x+47", "y^2=x^5+112*x", "y^2=71*x^6+87*x^5+22*x^4+108*x^3+9*x^2+26*x+48", "y^2=101*x^6+76*x^4+59*x^3+76*x^2+101", "y^2=55*x^6+100*x^5+63*x^4+69*x^3+63*x^2+100*x+55", "y^2=30*x^6+79*x^5+74*x^4+21*x^3+58*x^2+17*x+31", "y^2=29*x^6+49*x^5+93*x^4+29*x^3+15*x^2+3*x+76", "y^2=19*x^6+10*x^5+111*x^4+39*x^3+111*x^2+10*x+19", "y^2=23*x^6+103*x^5+34*x^4+60*x^3+33*x^2+94*x+70", "y^2=48*x^6+64*x^5+86*x^4+15*x^3+94*x^2+83*x+3", "y^2=61*x^6+7*x^5+66*x^4+41*x^3+66*x^2+7*x+61", "y^2=66*x^6+48*x^5+103*x^4+19*x^3+33*x^2+21*x+5", "y^2=91*x^6+78*x^5+46*x^4+48*x^3+46*x^2+78*x+91", "y^2=112*x^6+67*x^5+62*x^4+40*x^3+13*x^2+50*x+71", "y^2=98*x^6+83*x^4+83*x^2+98", "y^2=75*x^6+92*x^5+95*x^4+73*x^3+3*x^2+102*x+48", "y^2=78*x^6+37*x^5+77*x^4+48*x^3+x^2+54*x+6", "y^2=109*x^6+8*x^5+74*x^4+56*x^3+84*x^2+112*x+25", "y^2=74*x^6+106*x^4+106*x^2+74", "y^2=96*x^6+47*x^5+9*x^4+52*x^3+104*x^2+47*x+17", "y^2=66*x^6+62*x^5+98*x^4+2*x^3+98*x^2+62*x+66", "y^2=20*x^6+63*x^5+112*x^4+70*x^3+60*x^2+22*x+10", "y^2=52*x^6+75*x^5+27*x^4+107*x^3+74*x^2+10*x+31", "y^2=103*x^6+4*x^5+11*x^4+108*x^3+104*x^2+97*x+70"], "dim1_distinct": 1, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "g": 2, "galois_groups": ["2T1"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.8.1"], "geometric_splitting_field": "2.0.8.1", "geometric_splitting_polynomials": [[2, 0, 1]], "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 46, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": false, "is_squarefree": false, "is_supersingular": false, "jacobian_count": 46, "label": "2.113.abk_ve", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 8, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.8.1"], "p": 113, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -36, 550, -4068, 12769], "poly_str": "1 -36 550 -4068 12769 ", "primitive_models": [], "q": 113, "real_poly": [1, -36, 324], "simple_distinct": ["1.113.as"], "simple_factors": ["1.113.asA", "1.113.asB"], "simple_multiplicities": [2], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "2.0.8.1", "splitting_polynomials": [[2, 0, 1]], "twist_count": 8, "twists": [["2.113.a_adu", "2.12769.aho_bzzq", 2], ["2.113.bk_ve", "2.12769.aho_bzzq", 2], ["2.113.s_id", "2.1442897.uu_gmity", 3], ["2.113.a_du", "2.163047361.bvds_bwvevbi", 4], ["2.113.as_id", "2.2081951752609.micem_cfvolvucvm", 6], ["2.113.aq_ey", "2.26584441929064321.meaame_pxotjgitbsgk", 8], ["2.113.q_ey", "2.26584441929064321.meaame_pxotjgitbsgk", 8]]}