Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 21 x + 113 x^{2} )( 1 - 11 x + 113 x^{2} )$ |
$1 - 32 x + 457 x^{2} - 3616 x^{3} + 12769 x^{4}$ | |
Frobenius angles: | $\pm0.0498602789898$, $\pm0.326901256467$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $33$ |
Isomorphism classes: | 156 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9579$ | $161645625$ | $2082318883776$ | $26583435300515625$ | $339451143353756928219$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $82$ | $12660$ | $1443154$ | $163041188$ | $18424048082$ | $2081947185630$ | $235260515103794$ | $26584441942674628$ | $3004041940837744882$ | $339456739016514681300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 33 curves (of which all are hyperelliptic):
- $y^2=105 x^6+16 x^5+16 x^4+46 x^3+70 x^2+18 x+81$
- $y^2=37 x^6+x^5+6 x^4+31 x^3+13 x^2+108 x+19$
- $y^2=93 x^6+90 x^5+94 x^4+75 x^3+94 x^2+90 x+93$
- $y^2=48 x^6+22 x^5+76 x^4+31 x^3+2 x^2+101 x+92$
- $y^2=107 x^6+33 x^5+64 x^4+86 x^3+64 x^2+33 x+107$
- $y^2=48 x^6+47 x^5+39 x^4+22 x^3+21 x^2+72 x+68$
- $y^2=40 x^6+68 x^5+48 x^4+81 x^3+48 x^2+68 x+40$
- $y^2=111 x^6+21 x^5+10 x^4+35 x^3+54 x^2+31 x+65$
- $y^2=12 x^6+79 x^5+64 x^4+9 x^3+80 x^2+36 x+32$
- $y^2=108 x^6+74 x^5+107 x^4+37 x^3+99 x^2+69 x+53$
- $y^2=76 x^6+96 x^5+16 x^4+73 x^3+107 x^2+44 x+100$
- $y^2=9 x^6+84 x^5+71 x^4+22 x^3+84 x^2+72 x+8$
- $y^2=90 x^6+35 x^4+52 x^3+15 x^2+86 x+41$
- $y^2=92 x^6+44 x^5+23 x^4+71 x^3+53 x^2+27 x+14$
- $y^2=27 x^6+54 x^5+30 x^4+76 x^3+60 x^2+24 x+80$
- $y^2=65 x^6+76 x^5+7 x^4+72 x^3+6 x^2+53 x+88$
- $y^2=39 x^6+5 x^5+68 x^4+4 x^3+85 x^2+46 x+35$
- $y^2=2 x^6+45 x^5+102 x^4+81 x^3+62 x^2+79 x+36$
- $y^2=24 x^6+38 x^5+100 x^4+18 x^3+100 x^2+38 x+24$
- $y^2=107 x^6+35 x^5+36 x^4+27 x^3+36 x^2+35 x+107$
- and 13 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The isogeny class factors as 1.113.av $\times$ 1.113.al and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.ak_af | $2$ | (not in LMFDB) |
2.113.k_af | $2$ | (not in LMFDB) |
2.113.bg_rp | $2$ | (not in LMFDB) |