Properties

Label 2.113.abg_rp
Base field $\F_{113}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{113}$
Dimension:  $2$
L-polynomial:  $( 1 - 21 x + 113 x^{2} )( 1 - 11 x + 113 x^{2} )$
  $1 - 32 x + 457 x^{2} - 3616 x^{3} + 12769 x^{4}$
Frobenius angles:  $\pm0.0498602789898$, $\pm0.326901256467$
Angle rank:  $2$ (numerical)
Jacobians:  $33$
Isomorphism classes:  156

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9579$ $161645625$ $2082318883776$ $26583435300515625$ $339451143353756928219$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $82$ $12660$ $1443154$ $163041188$ $18424048082$ $2081947185630$ $235260515103794$ $26584441942674628$ $3004041940837744882$ $339456739016514681300$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 33 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{113}$.

Endomorphism algebra over $\F_{113}$
The isogeny class factors as 1.113.av $\times$ 1.113.al and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.113.ak_af$2$(not in LMFDB)
2.113.k_af$2$(not in LMFDB)
2.113.bg_rp$2$(not in LMFDB)