-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 9579, 'abvar_counts': [9579, 161645625, 2082318883776, 26583435300515625, 339451143353756928219, 4334513591968712133120000, 55347517716625024312207939611, 706732553041615547721107063015625, 9024267973740241712272252791740789184, 115230877655479953221602153514085409265625], 'abvar_counts_str': '9579 161645625 2082318883776 26583435300515625 339451143353756928219 4334513591968712133120000 55347517716625024312207939611 706732553041615547721107063015625 9024267973740241712272252791740789184 115230877655479953221602153514085409265625 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.0498602789897879, 0.326901256466936], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 82, 'curve_counts': [82, 12660, 1443154, 163041188, 18424048082, 2081947185630, 235260515103794, 26584441942674628, 3004041940837744882, 339456739016514681300], 'curve_counts_str': '82 12660 1443154 163041188 18424048082 2081947185630 235260515103794 26584441942674628 3004041940837744882 339456739016514681300 ', 'curves': ['y^2=105*x^6+16*x^5+16*x^4+46*x^3+70*x^2+18*x+81', 'y^2=37*x^6+x^5+6*x^4+31*x^3+13*x^2+108*x+19', 'y^2=93*x^6+90*x^5+94*x^4+75*x^3+94*x^2+90*x+93', 'y^2=48*x^6+22*x^5+76*x^4+31*x^3+2*x^2+101*x+92', 'y^2=107*x^6+33*x^5+64*x^4+86*x^3+64*x^2+33*x+107', 'y^2=48*x^6+47*x^5+39*x^4+22*x^3+21*x^2+72*x+68', 'y^2=40*x^6+68*x^5+48*x^4+81*x^3+48*x^2+68*x+40', 'y^2=111*x^6+21*x^5+10*x^4+35*x^3+54*x^2+31*x+65', 'y^2=12*x^6+79*x^5+64*x^4+9*x^3+80*x^2+36*x+32', 'y^2=108*x^6+74*x^5+107*x^4+37*x^3+99*x^2+69*x+53', 'y^2=76*x^6+96*x^5+16*x^4+73*x^3+107*x^2+44*x+100', 'y^2=9*x^6+84*x^5+71*x^4+22*x^3+84*x^2+72*x+8', 'y^2=90*x^6+35*x^4+52*x^3+15*x^2+86*x+41', 'y^2=92*x^6+44*x^5+23*x^4+71*x^3+53*x^2+27*x+14', 'y^2=27*x^6+54*x^5+30*x^4+76*x^3+60*x^2+24*x+80', 'y^2=65*x^6+76*x^5+7*x^4+72*x^3+6*x^2+53*x+88', 'y^2=39*x^6+5*x^5+68*x^4+4*x^3+85*x^2+46*x+35', 'y^2=2*x^6+45*x^5+102*x^4+81*x^3+62*x^2+79*x+36', 'y^2=24*x^6+38*x^5+100*x^4+18*x^3+100*x^2+38*x+24', 'y^2=107*x^6+35*x^5+36*x^4+27*x^3+36*x^2+35*x+107', 'y^2=16*x^6+74*x^5+13*x^4+100*x^3+48*x^2+16*x+55', 'y^2=54*x^6+17*x^5+41*x^4+38*x^3+41*x^2+17*x+54', 'y^2=90*x^6+88*x^5+60*x^4+57*x^3+56*x^2+12*x+48', 'y^2=72*x^6+33*x^5+93*x^4+51*x^3+93*x^2+33*x+72', 'y^2=56*x^6+56*x^5+18*x^4+51*x^3+39*x^2+11*x+112', 'y^2=70*x^6+56*x^5+109*x^4+24*x^3+109*x^2+56*x+70', 'y^2=90*x^6+111*x^5+33*x^4+65*x^3+43*x^2+50*x+18', 'y^2=52*x^6+47*x^5+85*x^4+49*x^3+96*x^2+76*x+73', 'y^2=37*x^6+74*x^5+82*x^4+85*x^3+40*x^2+39*x+73', 'y^2=51*x^6+53*x^5+103*x^4+20*x^3+41*x^2+89*x+42', 'y^2=37*x^6+51*x^5+4*x^4+92*x^3+66*x^2+12*x+67', 'y^2=73*x^6+69*x^5+82*x^4+42*x^3+109*x^2+41*x+45', 'y^2=103*x^6+13*x^5+109*x^4+107*x^3+109*x^2+13*x+103'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 8, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.11.1', '2.0.331.1'], 'geometric_splitting_field': '4.0.13256881.1', 'geometric_splitting_polynomials': [[6400, 0, 171, 0, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 33, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 33, 'label': '2.113.abg_rp', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.11.1', '2.0.331.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 3, 1, 12], [1, 3, 2, 12], [2, 17, 1, 36]], 'poly': [1, -32, 457, -3616, 12769], 'poly_str': '1 -32 457 -3616 12769 ', 'primitive_models': [], 'principal_polarization_count': 36, 'q': 113, 'real_poly': [1, -32, 231], 'simple_distinct': ['1.113.av', '1.113.al'], 'simple_factors': ['1.113.avA', '1.113.alA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,3*F-V+3', '5,-19*F+1', '5,6*V-104'], 'size': 156, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.13256881.1', 'splitting_polynomials': [[6400, 0, 171, 0, 1]], 'twist_count': 4, 'twists': [['2.113.ak_af', '2.12769.aeg_ejz', 2], ['2.113.k_af', '2.12769.aeg_ejz', 2], ['2.113.bg_rp', '2.12769.aeg_ejz', 2]], 'weak_equivalence_count': 8, 'zfv_index': 100, 'zfv_index_factorization': [[2, 2], [5, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 72, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 3641, 'zfv_singular_count': 6, 'zfv_singular_primes': ['2,3*F-V+3', '5,-19*F+1', '5,6*V-104']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 197452
{'base_label': '2.113.abg_rp', 'extension_degree': 1, 'extension_label': '1.113.av', 'multiplicity': 1}
-
id: 197453
{'base_label': '2.113.abg_rp', 'extension_degree': 1, 'extension_label': '1.113.al', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.11.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.113.av', 'galois_group': '2T1', 'places': [['102', '1'], ['10', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.331.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.113.al', 'galois_group': '2T1', 'places': [['107', '1'], ['5', '1']]}