Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 27 x + 364 x^{2} - 3051 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.103228391180$, $\pm0.395611383893$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.145617192.1 |
Galois group: | $D_{4}$ |
Jacobians: | $168$ |
Isomorphism classes: | 168 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10056$ | $163027872$ | $2082886931232$ | $26582250780699264$ | $339452002732501562376$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $87$ | $12769$ | $1443546$ | $163033921$ | $18424094727$ | $2081951694142$ | $235260590755767$ | $26584442490859009$ | $3004041940710042042$ | $339456738992382623809$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 168 curves (of which all are hyperelliptic):
- $y^2=5 x^6+15 x^5+7 x^4+36 x^3+36 x^2+71 x+68$
- $y^2=108 x^6+39 x^5+57 x^4+99 x^3+97 x^2+88 x+51$
- $y^2=2 x^6+47 x^5+31 x^4+77 x^3+11 x^2+9 x+25$
- $y^2=42 x^6+8 x^5+74 x^4+84 x^3+28 x^2+71 x+70$
- $y^2=34 x^6+110 x^5+101 x^4+85 x^3+19 x^2+18 x+27$
- $y^2=75 x^6+46 x^5+64 x^4+37 x^3+23 x^2+56 x+41$
- $y^2=83 x^6+90 x^5+36 x^4+84 x^3+108 x^2+102 x+97$
- $y^2=84 x^6+7 x^5+57 x^4+38 x^3+46 x^2+94 x+48$
- $y^2=29 x^6+4 x^5+82 x^4+94 x^3+2 x^2+91 x+29$
- $y^2=90 x^6+110 x^5+5 x^4+14 x^3+109 x^2+5 x+59$
- $y^2=110 x^6+68 x^5+35 x^4+87 x^3+24 x^2+30 x+86$
- $y^2=109 x^6+92 x^5+97 x^3+48 x^2+76 x+70$
- $y^2=21 x^6+61 x^5+6 x^4+17 x^3+83 x^2+51 x+73$
- $y^2=78 x^6+62 x^5+6 x^4+26 x^3+4 x^2+67 x+57$
- $y^2=59 x^6+96 x^5+41 x^4+21 x^3+74 x^2+101 x+30$
- $y^2=30 x^6+14 x^5+81 x^4+25 x^3+8 x^2+70 x+2$
- $y^2=9 x^6+51 x^5+47 x^4+30 x^3+24 x^2+89 x+9$
- $y^2=101 x^6+64 x^5+98 x^4+67 x^3+48 x^2+110 x+74$
- $y^2=21 x^6+55 x^5+29 x^4+45 x^3+104 x^2+55 x+60$
- $y^2=109 x^6+106 x^5+56 x^4+62 x^3+77 x^2+41 x+58$
- and 148 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.145617192.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bb_oa | $2$ | (not in LMFDB) |