-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10056, 'abvar_counts': [10056, 163027872, 2082886931232, 26582250780699264, 339452002732501562376, 4334522978467116472762368, 55347535514549841203333752392, 706732567614791481494375188572672, 9024267973356617024993318401903075872, 115230877647288163679200388021939165722272], 'abvar_counts_str': '10056 163027872 2082886931232 26582250780699264 339452002732501562376 4334522978467116472762368 55347535514549841203333752392 706732567614791481494375188572672 9024267973356617024993318401903075872 115230877647288163679200388021939165722272 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.10322839118019, 0.395611383893407], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 87, 'curve_counts': [87, 12769, 1443546, 163033921, 18424094727, 2081951694142, 235260590755767, 26584442490859009, 3004041940710042042, 339456738992382623809], 'curve_counts_str': '87 12769 1443546 163033921 18424094727 2081951694142 235260590755767 26584442490859009 3004041940710042042 339456738992382623809 ', 'curves': ['y^2=5*x^6+15*x^5+7*x^4+36*x^3+36*x^2+71*x+68', 'y^2=108*x^6+39*x^5+57*x^4+99*x^3+97*x^2+88*x+51', 'y^2=2*x^6+47*x^5+31*x^4+77*x^3+11*x^2+9*x+25', 'y^2=42*x^6+8*x^5+74*x^4+84*x^3+28*x^2+71*x+70', 'y^2=34*x^6+110*x^5+101*x^4+85*x^3+19*x^2+18*x+27', 'y^2=75*x^6+46*x^5+64*x^4+37*x^3+23*x^2+56*x+41', 'y^2=83*x^6+90*x^5+36*x^4+84*x^3+108*x^2+102*x+97', 'y^2=84*x^6+7*x^5+57*x^4+38*x^3+46*x^2+94*x+48', 'y^2=29*x^6+4*x^5+82*x^4+94*x^3+2*x^2+91*x+29', 'y^2=90*x^6+110*x^5+5*x^4+14*x^3+109*x^2+5*x+59', 'y^2=110*x^6+68*x^5+35*x^4+87*x^3+24*x^2+30*x+86', 'y^2=109*x^6+92*x^5+97*x^3+48*x^2+76*x+70', 'y^2=21*x^6+61*x^5+6*x^4+17*x^3+83*x^2+51*x+73', 'y^2=78*x^6+62*x^5+6*x^4+26*x^3+4*x^2+67*x+57', 'y^2=59*x^6+96*x^5+41*x^4+21*x^3+74*x^2+101*x+30', 'y^2=30*x^6+14*x^5+81*x^4+25*x^3+8*x^2+70*x+2', 'y^2=9*x^6+51*x^5+47*x^4+30*x^3+24*x^2+89*x+9', 'y^2=101*x^6+64*x^5+98*x^4+67*x^3+48*x^2+110*x+74', 'y^2=21*x^6+55*x^5+29*x^4+45*x^3+104*x^2+55*x+60', 'y^2=109*x^6+106*x^5+56*x^4+62*x^3+77*x^2+41*x+58', 'y^2=11*x^6+92*x^5+81*x^4+11*x^3+56*x^2+31*x+111', 'y^2=81*x^6+81*x^5+103*x^4+97*x^3+7*x^2+73*x+80', 'y^2=16*x^6+35*x^5+18*x^4+112*x^3+x^2+97*x+28', 'y^2=45*x^6+104*x^5+78*x^4+26*x^3+81*x^2+38*x+61', 'y^2=86*x^6+58*x^5+46*x^4+107*x^3+9*x^2+41*x+37', 'y^2=56*x^6+53*x^5+109*x^4+66*x^3+91*x^2+32*x+109', 'y^2=59*x^6+43*x^5+19*x^4+105*x^3+94*x^2+9*x+48', 'y^2=103*x^6+14*x^5+16*x^4+21*x^3+67*x^2+107*x+39', 'y^2=27*x^6+69*x^5+29*x^4+29*x^3+21*x^2+41*x', 'y^2=94*x^6+53*x^5+72*x^4+50*x^3+112*x^2+46*x+40', 'y^2=35*x^6+11*x^5+107*x^4+104*x^3+59*x^2+74*x+109', 'y^2=44*x^6+99*x^5+32*x^4+98*x^3+6*x^2+102*x+36', 'y^2=39*x^6+43*x^5+90*x^4+24*x^3+91*x^2+8*x+73', 'y^2=23*x^6+74*x^5+102*x^4+51*x^3+112*x^2+40*x+11', 'y^2=108*x^6+45*x^5+6*x^4+39*x^3+2*x^2+95*x+6', 'y^2=102*x^6+88*x^5+22*x^4+112*x^3+2*x^2+20*x+28', 'y^2=95*x^6+97*x^5+100*x^4+28*x^3+36*x^2+8*x+76', 'y^2=46*x^6+74*x^5+56*x^4+4*x^3+26*x^2+111*x+66', 'y^2=10*x^6+80*x^5+110*x^4+94*x^3+94*x^2+23*x+46', 'y^2=74*x^6+82*x^5+22*x^4+22*x^3+92*x^2+35*x+45', 'y^2=54*x^6+90*x^5+71*x^4+100*x^3+80*x^2+44*x+99', 'y^2=12*x^6+20*x^5+x^4+79*x^3+111*x^2+91*x+104', 'y^2=25*x^6+108*x^5+41*x^4+59*x^3+19*x^2+71*x+40', 'y^2=92*x^6+18*x^5+41*x^4+45*x^3+13*x^2+8*x+44', 'y^2=67*x^6+24*x^5+98*x^4+112*x^3+31*x^2+104*x+62', 'y^2=73*x^6+96*x^5+18*x^4+67*x^3+69*x^2+9*x+110', 'y^2=39*x^6+55*x^5+63*x^4+110*x^3+80*x^2+78*x+21', 'y^2=21*x^6+66*x^5+39*x^3+38*x^2+9*x+111', 'y^2=17*x^6+110*x^5+106*x^4+82*x^3+18*x^2+17*x+92', 'y^2=16*x^6+10*x^5+77*x^4+91*x^3+15*x^2+25*x+15', 'y^2=68*x^6+58*x^5+76*x^4+111*x^3+27*x^2+49*x+110', 'y^2=74*x^6+98*x^5+51*x^4+105*x^3+71*x^2+105*x+3', 'y^2=42*x^6+30*x^5+43*x^4+3*x^3+11*x^2+68*x+44', 'y^2=76*x^6+31*x^5+84*x^4+61*x^3+49*x^2+11*x+27', 'y^2=63*x^6+99*x^5+4*x^4+88*x^3+60*x^2+66*x+112', 'y^2=71*x^6+105*x^5+46*x^4+29*x^3+14*x^2+87*x+90', 'y^2=58*x^6+71*x^5+30*x^4+98*x^3+86*x^2+46*x+46', 'y^2=77*x^5+19*x^4+21*x^3+3*x^2+84*x+54', 'y^2=36*x^6+21*x^5+61*x^4+7*x^3+3*x^2+7*x+93', 'y^2=73*x^6+5*x^5+89*x^4+78*x^3+70*x^2+78*x+35', 'y^2=58*x^6+78*x^5+48*x^4+20*x^3+48*x^2+104*x+4', 'y^2=101*x^6+70*x^5+97*x^4+49*x^3+4*x^2+41*x+39', 'y^2=94*x^6+70*x^4+67*x^3+12*x^2+23*x+96', 'y^2=100*x^6+83*x^5+95*x^4+13*x^3+50*x^2+77*x+6', 'y^2=37*x^6+83*x^5+38*x^4+44*x^3+14*x^2+8*x+3', 'y^2=96*x^6+60*x^5+80*x^4+27*x^3+80*x^2+84*x+96', 'y^2=65*x^6+81*x^5+48*x^4+34*x^3+87*x^2+105*x+10', 'y^2=103*x^6+8*x^5+44*x^4+57*x^3+95*x^2+4*x+111', 'y^2=54*x^6+47*x^5+21*x^4+55*x^3+19*x^2+87*x+36', 'y^2=82*x^6+40*x^5+49*x^4+83*x^3+47*x^2+12', 'y^2=41*x^6+67*x^5+100*x^4+105*x^3+57*x^2+15*x+25', 'y^2=66*x^6+35*x^5+53*x^4+74*x+83', 'y^2=30*x^6+103*x^5+90*x^4+106*x^3+47*x^2+31*x+90', 'y^2=77*x^6+93*x^5+106*x^4+110*x^3+72*x^2+90*x+8', 'y^2=86*x^6+63*x^5+58*x^4+19*x^3+104*x^2+54*x+31', 'y^2=28*x^6+78*x^5+7*x^4+79*x^3+103*x^2+94*x+62', 'y^2=111*x^6+65*x^5+14*x^4+70*x^3+88*x^2+67*x+83', 'y^2=19*x^6+51*x^5+111*x^4+34*x^3+76*x^2+68*x+76', 'y^2=112*x^6+66*x^5+103*x^4+62*x^3+32*x^2+35*x+85', 'y^2=4*x^6+72*x^5+102*x^4+39*x^3+33*x^2+26*x+17', 'y^2=11*x^6+x^5+97*x^4+49*x^3+10*x^2+65*x+45', 'y^2=104*x^6+14*x^5+x^4+26*x^3+96*x^2+79*x+46', 'y^2=20*x^6+49*x^5+52*x^4+17*x^3+20*x^2+104*x+65', 'y^2=93*x^6+82*x^5+14*x^4+20*x^3+52*x^2+57*x+109', 'y^2=63*x^6+11*x^3+78*x^2+53*x+17', 'y^2=48*x^6+37*x^5+10*x^4+80*x^3+99*x^2+82*x+39', 'y^2=19*x^6+62*x^5+88*x^4+16*x^3+111*x^2+69*x+101', 'y^2=43*x^6+18*x^5+85*x^4+10*x^3+68*x^2+27*x+1', 'y^2=108*x^6+70*x^5+56*x^4+54*x^3+43*x^2+28*x+39', 'y^2=111*x^6+33*x^5+70*x^4+45*x^3+8*x^2+111*x+11', 'y^2=5*x^6+2*x^5+109*x^4+109*x^3+110*x^2+59*x+80', 'y^2=11*x^6+45*x^5+29*x^4+101*x^3+22*x^2+7*x+98', 'y^2=69*x^6+72*x^5+76*x^4+98*x^3+55*x^2+10*x+107', 'y^2=90*x^6+2*x^5+35*x^4+30*x^3+33*x^2+91*x+23', 'y^2=110*x^6+57*x^5+6*x^4+7*x^3+17*x^2+16*x+80', 'y^2=40*x^6+80*x^5+15*x^4+110*x^3+70*x^2+x+78', 'y^2=8*x^6+83*x^5+95*x^4+31*x^3+37*x^2+103*x+71', 'y^2=87*x^6+103*x^5+70*x^4+82*x^3+33*x^2+103*x+23', 'y^2=12*x^6+59*x^5+33*x^4+76*x^3+66*x^2+108*x+5', 'y^2=40*x^6+10*x^5+65*x^4+3*x^3+64*x^2+67*x+71', 'y^2=30*x^6+33*x^5+79*x^4+46*x^3+61*x^2+79*x', 'y^2=100*x^6+4*x^5+76*x^4+34*x^3+90*x^2+89*x+10', 'y^2=112*x^6+55*x^5+40*x^4+12*x^3+22*x^2+39*x+18', 'y^2=101*x^6+17*x^5+101*x^4+112*x^3+33*x^2+56*x+5', 'y^2=19*x^6+94*x^5+75*x^4+8*x^3+30*x^2+86*x+10', 'y^2=67*x^6+2*x^5+54*x^4+34*x^3+5*x^2+37*x+103', 'y^2=96*x^6+61*x^5+49*x^4+64*x^3+82*x^2+87*x+73', 'y^2=94*x^6+40*x^5+85*x^3+14*x^2+13*x+43', 'y^2=33*x^6+105*x^5+61*x^4+19*x^3+59*x^2+37*x+91', 'y^2=42*x^6+57*x^5+99*x^4+37*x^3+47*x^2+109*x+70', 'y^2=98*x^6+110*x^5+22*x^4+107*x^3+18*x^2+41*x+55', 'y^2=106*x^6+67*x^5+50*x^4+42*x^3+74*x^2+30*x+108', 'y^2=98*x^6+9*x^5+88*x^4+70*x^3+26*x^2+x+78', 'y^2=3*x^6+54*x^5+12*x^4+51*x^3+15*x^2+93*x+1', 'y^2=74*x^6+22*x^5+70*x^4+91*x^3+13*x^2+84*x+33', 'y^2=9*x^6+2*x^5+55*x^4+28*x^3+25*x^2+2*x+53', 'y^2=32*x^6+33*x^5+7*x^4+38*x^3+81*x^2+93*x+50', 'y^2=38*x^6+89*x^5+47*x^4+75*x^3+105*x^2+3*x+100', 'y^2=37*x^6+49*x^5+41*x^4+81*x^3+44*x^2+58*x+67', 'y^2=42*x^6+112*x^5+76*x^4+18*x^3+97*x^2+21*x+108', 'y^2=41*x^6+79*x^5+8*x^4+24*x^3+37*x^2+22*x+42', 'y^2=81*x^6+24*x^5+x^4+80*x^3+105*x^2+39*x+29', 'y^2=67*x^6+53*x^5+100*x^4+51*x^3+89*x^2+78*x+59', 'y^2=45*x^6+51*x^5+82*x^4+76*x^3+17*x^2+27*x+20', 'y^2=42*x^6+84*x^5+102*x^4+8*x^3+82*x^2+81*x+107', 'y^2=33*x^6+65*x^5+78*x^4+47*x^3+68*x^2+12*x+103', 'y^2=93*x^6+103*x^5+4*x^4+51*x^3+3*x^2+84*x+33', 'y^2=90*x^6+84*x^5+86*x^4+52*x^3+12*x^2+95*x+84', 'y^2=101*x^6+65*x^5+65*x^4+27*x^3+66*x^2+83*x+20', 'y^2=67*x^6+94*x^5+6*x^4+59*x^3+29*x^2+44*x+73', 'y^2=98*x^6+12*x^5+97*x^4+35*x^3+2*x^2+13*x+112', 'y^2=85*x^6+50*x^5+11*x^4+72*x^3+87*x^2+6*x+101', 'y^2=81*x^6+63*x^5+70*x^4+86*x^3+67*x^2+49*x+26', 'y^2=8*x^6+61*x^5+62*x^4+41*x^3+30*x^2+57*x+104', 'y^2=6*x^6+60*x^5+96*x^4+32*x^3+14*x^2+66*x+80', 'y^2=28*x^6+x^5+70*x^4+67*x^3+28*x^2+77*x+9', 'y^2=102*x^6+95*x^5+37*x^4+70*x^3+97*x^2+34*x+7', 'y^2=65*x^6+93*x^5+12*x^4+70*x^3+91*x^2+79*x+108', 'y^2=85*x^6+70*x^5+47*x^4+72*x^3+36*x^2+16*x+19', 'y^2=68*x^6+83*x^5+41*x^4+38*x^3+88*x^2+76*x+32', 'y^2=19*x^6+68*x^5+73*x^4+67*x^3+62*x^2+43*x+19', 'y^2=82*x^6+5*x^5+58*x^4+28*x^3+25*x^2+28*x+42', 'y^2=71*x^6+94*x^5+9*x^4+76*x^3+83*x^2+18*x+62', 'y^2=31*x^6+77*x^5+42*x^4+8*x^3+28*x^2+79*x+96', 'y^2=103*x^6+96*x^5+74*x^4+72*x^3+103*x^2+66*x+20', 'y^2=33*x^6+50*x^5+10*x^4+47*x^3+5*x^2+86*x+28', 'y^2=94*x^6+91*x^5+40*x^4+98*x^3+26*x^2+40*x+84', 'y^2=38*x^6+102*x^5+45*x^4+2*x^3+19*x^2+84*x+80', 'y^2=30*x^6+37*x^5+93*x^4+70*x^3+42*x^2+84*x+105', 'y^2=19*x^6+7*x^5+16*x^4+102*x^3+12*x^2+96*x+76', 'y^2=71*x^6+9*x^5+4*x^4+76*x^3+15*x^2+79*x+53', 'y^2=73*x^6+15*x^5+40*x^4+30*x^3+112*x^2+71*x+51', 'y^2=28*x^6+31*x^5+33*x^4+81*x^3+13*x^2+48*x+19', 'y^2=81*x^6+70*x^5+56*x^4+75*x^3+78*x^2+67*x+91', 'y^2=88*x^6+39*x^5+10*x^4+58*x^3+67*x^2+62*x+40', 'y^2=66*x^6+56*x^5+15*x^4+40*x^3+92*x^2+56*x+55', 'y^2=84*x^6+12*x^5+77*x^4+88*x^3+48*x^2+104*x+30', 'y^2=35*x^6+39*x^5+29*x^4+32*x^3+110*x^2+73*x+89', 'y^2=109*x^6+2*x^5+95*x^4+102*x^3+24*x^2+95*x+83', 'y^2=11*x^6+25*x^5+89*x^4+46*x^3+72*x^2+16*x+1', 'y^2=76*x^6+80*x^5+16*x^4+107*x^3+19*x^2+30*x+105', 'y^2=60*x^6+74*x^5+50*x^4+95*x^3+60*x^2+101*x+45', 'y^2=29*x^6+16*x^5+96*x^4+32*x^3+26*x^2+107*x+93', 'y^2=52*x^6+70*x^5+105*x^4+49*x^3+61*x^2+5*x+90', 'y^2=93*x^6+101*x^5+102*x^4+23*x^3+5*x^2+30*x', 'y^2=104*x^6+103*x^5+67*x^4+41*x^3+80*x^2+83*x+60', 'y^2=66*x^6+107*x^5+76*x^4+40*x^3+52*x^2+102*x+63', 'y^2=48*x^6+32*x^5+24*x^4+99*x^3+41*x^2+95*x+19'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 2, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.145617192.1'], 'geometric_splitting_field': '4.0.145617192.1', 'geometric_splitting_polynomials': [[2388, 552, 91, -1, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 168, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 168, 'label': '2.113.abb_oa', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.145617192.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 3, 1, 28], [1, 7, 3, 2], [1, 11, 1, 14]], 'poly': [1, -27, 364, -3051, 12769], 'poly_str': '1 -27 364 -3051 12769 ', 'primitive_models': [], 'principal_polarization_count': 168, 'q': 113, 'real_poly': [1, -27, 138], 'simple_distinct': ['2.113.abb_oa'], 'simple_factors': ['2.113.abb_oaA'], 'simple_multiplicities': [1], 'singular_primes': ['2,-2*F^2+2*F+V-27'], 'size': 168, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.145617192.1', 'splitting_polynomials': [[2388, 552, 91, -1, 1]], 'twist_count': 2, 'twists': [['2.113.bb_oa', '2.12769.ab_ajym', 2]], 'weak_equivalence_count': 2, 'zfv_index': 2, 'zfv_index_factorization': [[2, 1]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 112, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 18592, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,-2*F^2+2*F+V-27']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.abb_oa', 'extension_degree': 1, 'extension_label': '2.113.abb_oa', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0', '0', '0'], 'center': '4.0.145617192.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.abb_oa', 'galois_group': '4T3', 'places': [['67', '1', '0', '0'], ['59', '1', '0', '0'], ['10635/113', '745/113', '12710/113', '9/113'], ['6002/113', '745/113', '12710/113', '9/113']]}