Invariants
Base field: | $\F_{113}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 27 x + 363 x^{2} - 3051 x^{3} + 12769 x^{4}$ |
Frobenius angles: | $\pm0.0996567331437$, $\pm0.396792718813$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.570467293.1 |
Galois group: | $D_{4}$ |
Jacobians: | $46$ |
Isomorphism classes: | 46 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $10055$ | $163001605$ | $2082769945535$ | $26582012415551125$ | $339451716698563660400$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $87$ | $12767$ | $1443465$ | $163032459$ | $18424079202$ | $2081951570639$ | $235260589373421$ | $26584442469610291$ | $3004041940502260275$ | $339456738992407067582$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 46 curves (of which all are hyperelliptic):
- $y^2=30 x^6+66 x^5+13 x^4+63 x^3+43 x^2+98 x+54$
- $y^2=98 x^6+23 x^5+35 x^4+17 x^3+105 x^2+12 x+6$
- $y^2=72 x^6+103 x^5+87 x^4+21 x^3+45 x^2+106 x+14$
- $y^2=50 x^6+58 x^5+92 x^4+5 x^3+111 x^2+69 x+48$
- $y^2=50 x^6+x^5+3 x^4+96 x^3+94 x^2+27 x+35$
- $y^2=76 x^6+86 x^5+6 x^4+43 x^3+51 x^2+111 x+94$
- $y^2=107 x^6+81 x^5+40 x^4+3 x^3+109 x^2+63 x+100$
- $y^2=47 x^6+73 x^5+20 x^4+76 x^3+10 x^2+33 x+73$
- $y^2=6 x^6+100 x^5+92 x^4+30 x^3+98 x^2+41 x+58$
- $y^2=107 x^6+9 x^5+72 x^4+100 x^3+92 x^2+101 x+107$
- $y^2=86 x^6+38 x^5+76 x^4+92 x^3+18 x^2+5 x+23$
- $y^2=101 x^6+109 x^5+83 x^4+62 x^3+61 x^2+63 x+107$
- $y^2=72 x^6+46 x^5+23 x^4+51 x^2+44$
- $y^2=12 x^6+37 x^5+50 x^4+109 x^3+80 x^2+15 x+40$
- $y^2=96 x^6+75 x^5+103 x^4+97 x^3+41 x^2+57 x+42$
- $y^2=50 x^6+79 x^5+54 x^4+72 x^3+69 x^2+11 x+79$
- $y^2=103 x^6+79 x^5+26 x^4+87 x^3+56 x^2+26 x+103$
- $y^2=61 x^6+95 x^5+94 x^4+46 x^3+35 x^2+8 x+45$
- $y^2=67 x^6+97 x^5+6 x^4+50 x^3+18 x^2+27 x+55$
- $y^2=58 x^6+94 x^5+94 x^4+100 x^3+50 x^2+33 x+75$
- and 26 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$The endomorphism algebra of this simple isogeny class is 4.0.570467293.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.113.bb_nz | $2$ | (not in LMFDB) |