-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 10055, 'abvar_counts': [10055, 163001605, 2082769945535, 26582012415551125, 339451716698563660400, 4334522721340085382908605, 55347535189338329244468758495, 706732567049906165840369724109125, 9024267972732431882666343111657253055, 115230877647296461282658803135795623558400], 'abvar_counts_str': '10055 163001605 2082769945535 26582012415551125 339451716698563660400 4334522721340085382908605 55347535189338329244468758495 706732567049906165840369724109125 9024267972732431882666343111657253055 115230877647296461282658803135795623558400 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.0996567331436507, 0.396792718812593], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 87, 'curve_counts': [87, 12767, 1443465, 163032459, 18424079202, 2081951570639, 235260589373421, 26584442469610291, 3004041940502260275, 339456738992407067582], 'curve_counts_str': '87 12767 1443465 163032459 18424079202 2081951570639 235260589373421 26584442469610291 3004041940502260275 339456738992407067582 ', 'curves': ['y^2=30*x^6+66*x^5+13*x^4+63*x^3+43*x^2+98*x+54', 'y^2=98*x^6+23*x^5+35*x^4+17*x^3+105*x^2+12*x+6', 'y^2=72*x^6+103*x^5+87*x^4+21*x^3+45*x^2+106*x+14', 'y^2=50*x^6+58*x^5+92*x^4+5*x^3+111*x^2+69*x+48', 'y^2=50*x^6+x^5+3*x^4+96*x^3+94*x^2+27*x+35', 'y^2=76*x^6+86*x^5+6*x^4+43*x^3+51*x^2+111*x+94', 'y^2=107*x^6+81*x^5+40*x^4+3*x^3+109*x^2+63*x+100', 'y^2=47*x^6+73*x^5+20*x^4+76*x^3+10*x^2+33*x+73', 'y^2=6*x^6+100*x^5+92*x^4+30*x^3+98*x^2+41*x+58', 'y^2=107*x^6+9*x^5+72*x^4+100*x^3+92*x^2+101*x+107', 'y^2=86*x^6+38*x^5+76*x^4+92*x^3+18*x^2+5*x+23', 'y^2=101*x^6+109*x^5+83*x^4+62*x^3+61*x^2+63*x+107', 'y^2=72*x^6+46*x^5+23*x^4+51*x^2+44', 'y^2=12*x^6+37*x^5+50*x^4+109*x^3+80*x^2+15*x+40', 'y^2=96*x^6+75*x^5+103*x^4+97*x^3+41*x^2+57*x+42', 'y^2=50*x^6+79*x^5+54*x^4+72*x^3+69*x^2+11*x+79', 'y^2=103*x^6+79*x^5+26*x^4+87*x^3+56*x^2+26*x+103', 'y^2=61*x^6+95*x^5+94*x^4+46*x^3+35*x^2+8*x+45', 'y^2=67*x^6+97*x^5+6*x^4+50*x^3+18*x^2+27*x+55', 'y^2=58*x^6+94*x^5+94*x^4+100*x^3+50*x^2+33*x+75', 'y^2=107*x^6+109*x^5+28*x^4+48*x^3+15*x^2+34*x+42', 'y^2=71*x^6+16*x^5+26*x^4+53*x^3+69*x^2+93*x+12', 'y^2=53*x^6+72*x^5+84*x^4+35*x^3+39*x^2+20*x+65', 'y^2=106*x^6+44*x^5+5*x^4+6*x^3+48*x^2+42*x+48', 'y^2=107*x^6+80*x^5+24*x^4+75*x^3+67*x^2+7*x+29', 'y^2=111*x^6+21*x^5+69*x^4+91*x^3+53*x^2+20*x+101', 'y^2=63*x^6+55*x^5+71*x^4+49*x^3+72*x^2+18*x+31', 'y^2=62*x^6+102*x^5+76*x^4+7*x^3+81*x^2+24*x+69', 'y^2=65*x^6+32*x^5+45*x^4+65*x^3+26*x^2+32*x+37', 'y^2=93*x^6+34*x^5+99*x^4+6*x^3+100*x^2+106*x+50', 'y^2=46*x^6+32*x^5+39*x^4+109*x^3+28*x^2+15*x+110', 'y^2=56*x^6+82*x^5+10*x^4+22*x^3+21*x^2+x+68', 'y^2=75*x^6+107*x^5+83*x^4+28*x^3+81*x^2+104*x+33', 'y^2=53*x^6+47*x^5+75*x^4+48*x^3+112*x^2+75*x+24', 'y^2=54*x^6+100*x^5+99*x^4+16*x^3+66*x^2+21*x+105', 'y^2=5*x^6+98*x^5+101*x^4+89*x^3+9*x^2+107*x+14', 'y^2=44*x^6+47*x^5+77*x^4+26*x^3+5*x^2+104*x+17', 'y^2=40*x^6+92*x^5+36*x^4+55*x^3+56*x^2+6*x+92', 'y^2=43*x^6+77*x^5+107*x^4+30*x^3+11*x^2+78*x+26', 'y^2=31*x^6+89*x^5+52*x^4+2*x^3+109*x^2+12*x+36', 'y^2=78*x^6+30*x^5+82*x^4+16*x^3+59*x^2+9*x+61', 'y^2=107*x^6+91*x^5+85*x^4+108*x^3+102*x^2+34*x+110', 'y^2=42*x^5+104*x^4+89*x^3+20*x^2+83*x+81', 'y^2=21*x^6+104*x^5+63*x^4+28*x^3+89*x^2+109*x+92', 'y^2=74*x^6+45*x^5+87*x^4+5*x^3+104*x^2+46*x+84', 'y^2=92*x^6+89*x^5+30*x^4+97*x^3+2*x^2+66*x+43'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 1, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.570467293.1'], 'geometric_splitting_field': '4.0.570467293.1', 'geometric_splitting_polynomials': [[2339, 566, 90, -1, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 46, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 46, 'label': '2.113.abb_nz', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.570467293.1'], 'p': 113, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 5, 1, 46]], 'poly': [1, -27, 363, -3051, 12769], 'poly_str': '1 -27 363 -3051 12769 ', 'primitive_models': [], 'principal_polarization_count': 46, 'q': 113, 'real_poly': [1, -27, 137], 'simple_distinct': ['2.113.abb_nz'], 'simple_factors': ['2.113.abb_nzA'], 'simple_multiplicities': [1], 'singular_primes': [], 'size': 46, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.570467293.1', 'splitting_polynomials': [[2339, 566, 90, -1, 1]], 'twist_count': 2, 'twists': [['2.113.bb_nz', '2.12769.ad_alal', 2]], 'weak_equivalence_count': 1, 'zfv_index': 1, 'zfv_index_factorization': [], 'zfv_is_bass': True, 'zfv_is_maximal': True, 'zfv_pic_size': 46, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 17413, 'zfv_singular_count': 0, 'zfv_singular_primes': []}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.113.abb_nz', 'extension_degree': 1, 'extension_label': '2.113.abb_nz', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.570467293.1', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.113.abb_nz', 'galois_group': '4T3', 'places': [['1490/113', '132/113', '6/113', '1/113'], ['106', '1', '0', '0']]}