Properties

Label 2.109.abj_tx
Base field $\F_{109}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{109}$
Dimension:  $2$
L-polynomial:  $1 - 35 x + 517 x^{2} - 3815 x^{3} + 11881 x^{4}$
Frobenius angles:  $\pm0.0819402301809$, $\pm0.249080388952$
Angle rank:  $2$ (numerical)
Number field:  4.0.206045.1
Galois group:  $D_{4}$
Jacobians:  $20$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $8549$ $138912701$ $1677054773849$ $19927252691589125$ $236738036884620098304$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $75$ $11691$ $1294995$ $141169683$ $15386348050$ $1677100087731$ $182803899546735$ $19925626267174083$ $2171893279305139455$ $236736367484273873206$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{109}$.

Endomorphism algebra over $\F_{109}$
The endomorphism algebra of this simple isogeny class is 4.0.206045.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.109.bj_tx$2$(not in LMFDB)