# Stored data for abelian variety isogeny class 2.109.abj_tx, downloaded from the LMFDB on 07 November 2025. {"abvar_count": 8549, "abvar_counts": [8549, 138912701, 1677054773849, 19927252691589125, 236738036884620098304, 2812664743026784971207701, 33417267980927663262175677689, 397030585122518705188904232609125, 4717120416988750959710427217529937629, 56044107683716041680166614984657689276416], "abvar_counts_str": "8549 138912701 1677054773849 19927252691589125 236738036884620098304 2812664743026784971207701 33417267980927663262175677689 397030585122518705188904232609125 4717120416988750959710427217529937629 56044107683716041680166614984657689276416 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.0819402301808836, 0.249080388952087], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 75, "curve_counts": [75, 11691, 1294995, 141169683, 15386348050, 1677100087731, 182803899546735, 19925626267174083, 2171893279305139455, 236736367484273873206], "curve_counts_str": "75 11691 1294995 141169683 15386348050 1677100087731 182803899546735 19925626267174083 2171893279305139455 236736367484273873206 ", "curves": ["y^2=11*x^6+48*x^5+42*x^4+63*x^3+76*x^2+68*x+39", "y^2=103*x^6+54*x^5+13*x^4+19*x^3+54*x^2+70*x+73", "y^2=90*x^6+5*x^5+18*x^4+x^3+21*x^2+33*x+46", "y^2=93*x^6+54*x^5+42*x^4+10*x^3+55*x^2+52*x+107", "y^2=9*x^6+84*x^5+107*x^4+102*x^3+45*x^2+94*x+102", "y^2=107*x^6+34*x^5+106*x^4+14*x^3+45*x^2+91*x+107", "y^2=33*x^6+59*x^5+103*x^4+14*x^3+11*x^2+7*x+23", "y^2=32*x^6+32*x^5+34*x^4+23*x^3+83*x^2+5*x+50", "y^2=44*x^6+48*x^5+75*x^4+20*x^3+43*x^2+51*x+58", "y^2=45*x^6+101*x^5+14*x^4+15*x^3+28*x^2+35*x+30", "y^2=43*x^6+89*x^5+51*x^4+2*x^3+16*x^2+41*x+72", "y^2=66*x^6+105*x^5+92*x^4+21*x^3+62*x^2+31*x+7", "y^2=85*x^6+57*x^5+53*x^4+24*x^3+61*x^2+29*x+92", "y^2=40*x^6+14*x^5+19*x^4+105*x^3+94*x^2+2*x+23", "y^2=85*x^6+30*x^5+71*x^4+16*x^3+26*x^2+67*x+8", "y^2=79*x^6+79*x^5+43*x^4+55*x^3+107*x^2+61*x+55", "y^2=89*x^6+28*x^5+30*x^4+44*x^3+64*x^2+92*x+72", "y^2=72*x^6+59*x^5+29*x^3+18*x^2+21*x+96", "y^2=68*x^6+75*x^5+2*x^4+53*x^3+104*x^2+4*x+34", "y^2=19*x^6+26*x^5+102*x^4+90*x^3+78*x^2+100*x+8"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 2, "g": 2, "galois_groups": ["4T3"], "geom_dim1_distinct": 0, "geom_dim1_factors": 0, "geom_dim2_distinct": 1, "geom_dim2_factors": 1, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["4T3"], "geometric_number_fields": ["4.0.206045.1"], "geometric_splitting_field": "4.0.35525.3", "geometric_splitting_polynomials": [[95, -5, 19, -1, 1]], "group_structure_count": 1, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 20, "is_geometrically_simple": true, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 20, "label": "2.109.abj_tx", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.206045.1"], "p": 109, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -35, 517, -3815, 11881], "poly_str": "1 -35 517 -3815 11881 ", "primitive_models": [], "q": 109, "real_poly": [1, -35, 299], "simple_distinct": ["2.109.abj_tx"], "simple_factors": ["2.109.abj_txA"], "simple_multiplicities": [1], "singular_primes": ["5,-F+3"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.35525.3", "splitting_polynomials": [[95, -5, 19, -1, 1]], "twist_count": 2, "twists": [["2.109.bj_tx", "2.11881.ahj_bjnd", 2]], "weak_equivalence_count": 2, "zfv_index": 5, "zfv_index_factorization": [[5, 1]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 6125, "zfv_singular_count": 2, "zfv_singular_primes": ["5,-F+3"]}