# Properties

 Label 1.64.aj Base Field $\F_{2^{6}}$ Dimension $1$ Ordinary Yes $p$-rank $1$ Principally polarizable Yes Contains a Jacobian Yes

## Invariants

 Base field: $\F_{2^{6}}$ Dimension: $1$ L-polynomial: $1 - 9 x + 64 x^{2}$ Frobenius angles: $\pm0.309839631512$ Angle rank: $1$ (numerical) Number field: $$\Q(\sqrt{-7})$$ Galois group: $C_2$ Jacobians: 7

This isogeny class is simple and geometrically simple.

## Newton polygon

This isogeny class is ordinary. $p$-rank: $1$ Slopes: $[0, 1]$

## Point counts

This isogeny class contains the Jacobians of 7 curves, and hence is principally polarizable:

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 56 4144 263144 16783200 1073731736 68719003024 4398042893384 281474974468800 18014398720839416 1152921506652542704

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 56 4144 263144 16783200 1073731736 68719003024 4398042893384 281474974468800 18014398720839416 1152921506652542704

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2^{6}}$
 The endomorphism algebra of this simple isogeny class is $$\Q(\sqrt{-7})$$.
All geometric endomorphisms are defined over $\F_{2^{6}}$.

## Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{2^{6}}$.

 Subfield Primitive Model $\F_{2}$ 1.2.ab $\F_{2}$ 1.2.b

## Twists

Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 1.64.j $2$ (not in LMFDB)