Invariants
| Base field: | $\F_{5^{4}}$ | 
| Dimension: | $1$ | 
| L-polynomial: | $1 + 9 x + 625 x^{2}$ | 
| Frobenius angles: | $\pm0.557609776697$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{-2419}) \) | 
| Galois group: | $C_2$ | 
| Jacobians: | $8$ | 
| Isomorphism classes: | 8 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ | 
| Slopes: | $[0, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $635$ | $391795$ | $244124480$ | $152587305315$ | $95367446999675$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $635$ | $391795$ | $244124480$ | $152587305315$ | $95367446999675$ | $59604645002978560$ | $37252902972971443595$ | $23283064365349549705155$ | $14551915228374468335954240$ | $9094947017729237213627487475$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+a^{32} x+a^{32}$
 - $y^2=x^3+a^{256} x+a^{256}$
 - $y^2=x^3+a^{496} x+a^{496}$
 - $y^2=x^3+a^{224} x+a^{224}$
 - $y^2=x^3+a^{608} x+a^{608}$
 - $y^2=x^3+a^{160} x+a^{160}$
 - $y^2=x^3+a^{176} x+a^{176}$
 - $y^2=x^3+a^{544} x+a^{544}$
 
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5^{4}}$.
Endomorphism algebra over $\F_{5^{4}}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2419}) \). | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 1.625.aj | $2$ | (not in LMFDB) |