Invariants
| Base field: | $\F_{5^{4}}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 6 x + 625 x^{2}$ |
| Frobenius angles: | $\pm0.538289458774$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-154}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $24$ |
| Isomorphism classes: | 24 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $632$ | $391840$ | $244129592$ | $152587198080$ | $95367442692152$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $632$ | $391840$ | $244129592$ | $152587198080$ | $95367442692152$ | $59604645141922720$ | $37252902975512744312$ | $23283064365212518709760$ | $14551915228373589969422072$ | $9094947017729350977786743200$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which 0 are hyperelliptic):
- $y^2=x^3+a^{358} x+a^{358}$
- $y^2=x^3+a^{478} x+a^{479}$
- $y^2=x^3+a^{82} x+a^{83}$
- $y^2=x^3+a^{622} x+a^{623}$
- $y^2=x^3+a^{214} x+a^{214}$
- $y^2=x^3+a^{130} x+a^{131}$
- $y^2=x^3+a^{14} x+a^{15}$
- $y^2=x^3+a^{46} x+a^{47}$
- $y^2=x^3+a^{126} x+a^{127}$
- $y^2=x^3+a^{542} x+a^{542}$
- $y^2=x^3+a^{302} x+a^{303}$
- $y^2=x^3+a^{254} x+a^{255}$
- $y^2=x^3+a^{510} x+a^{511}$
- $y^2=x^3+a^{414} x+a^{414}$
- $y^2=x^3+a^{62} x+a^{63}$
- $y^2=x^3+a^{582} x+a^{582}$
- $y^2=x^3+a^{198} x+a^{198}$
- $y^2=x^3+a^{446} x+a^{446}$
- $y^2=x^3+a^{222} x+a^{223}$
- $y^2=x^3+a^{526} x+a^{527}$
- $y^2=x^3+a^{606} x+a^{607}$
- $y^2=x^3+a^{366} x+a^{366}$
- $y^2=x^3+a^{402} x+a^{403}$
- $y^2=x^3+a^{18} x+a^{19}$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5^{4}}$.
Endomorphism algebra over $\F_{5^{4}}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-154}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.625.ag | $2$ | (not in LMFDB) |