Properties

Label 1.625.aj
Base field $\F_{5^{4}}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5^{4}}$
Dimension:  $1$
L-polynomial:  $1 - 9 x + 625 x^{2}$
Frobenius angles:  $\pm0.442390223303$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-2419}) \)
Galois group:  $C_2$
Jacobians:  $8$
Isomorphism classes:  8

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $617$ $391795$ $244156772$ $152587305315$ $95367416281577$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $617$ $391795$ $244156772$ $152587305315$ $95367416281577$ $59604645002978560$ $37252902996266837657$ $23283064365349549705155$ $14551915228359235277327012$ $9094947017729237213627487475$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):

where $a$ is a root of the Conway polynomial.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5^{4}}$.

Endomorphism algebra over $\F_{5^{4}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2419}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.625.j$2$(not in LMFDB)