Invariants
| Base field: | $\F_{5^{4}}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 9 x + 625 x^{2}$ |
| Frobenius angles: | $\pm0.442390223303$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2419}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $617$ | $391795$ | $244156772$ | $152587305315$ | $95367416281577$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $617$ | $391795$ | $244156772$ | $152587305315$ | $95367416281577$ | $59604645002978560$ | $37252902996266837657$ | $23283064365349549705155$ | $14551915228359235277327012$ | $9094947017729237213627487475$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+a^{162} x+a^{163}$
- $y^2=x^3+a^{34} x+a^{35}$
- $y^2=x^3+a^{178} x+a^{179}$
- $y^2=x^3+a^{610} x+a^{611}$
- $y^2=x^3+a^{498} x+a^{499}$
- $y^2=x^3+a^{258} x+a^{259}$
- $y^2=x^3+a^{546} x+a^{547}$
- $y^2=x^3+a^{226} x+a^{227}$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5^{4}}$.
Endomorphism algebra over $\F_{5^{4}}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2419}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.625.j | $2$ | (not in LMFDB) |