Invariants
| Base field: | $\F_{5^{4}}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 3 x + 625 x^{2}$ |
| Frobenius angles: | $\pm0.480889929069$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2491}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $623$ | $391867$ | $244146224$ | $152587131795$ | $95367425865383$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $623$ | $391867$ | $244146224$ | $152587131795$ | $95367425865383$ | $59604645232334272$ | $37252902989599498439$ | $23283064365116314185315$ | $14551915228362927136891568$ | $9094947017729439760581962827$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+a^{19} x+a^{19}$
- $y^2=x^3+a^{339} x+a^{340}$
- $y^2=x^3+a^{499} x+a^{500}$
- $y^2=x^3+a^{475} x+a^{475}$
- $y^2=x^3+a^{95} x+a^{95}$
- $y^2=x^3+a^{319} x+a^{320}$
- $y^2=x^3+a^{571} x+a^{572}$
- $y^2=x^3+a^{315} x+a^{316}$
- $y^2=x^3+a^{615} x+a^{616}$
- $y^2=x^3+a^{439} x+a^{440}$
- $y^2=x^3+a^{503} x+a^{503}$
- $y^2=x^3+a^{351} x+a^{352}$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5^{4}}$.
Endomorphism algebra over $\F_{5^{4}}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2491}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.625.d | $2$ | (not in LMFDB) |