Invariants
| Base field: | $\F_{5^{4}}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 26 x + 625 x^{2}$ |
| Frobenius angles: | $\pm0.325931936124$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-114}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $24$ |
| Isomorphism classes: | 24 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $600$ | $391200$ | $244171800$ | $152588342400$ | $95367423903000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $600$ | $391200$ | $244171800$ | $152588342400$ | $95367423903000$ | $59604644291853600$ | $37252902976883194200$ | $23283064365488038924800$ | $14551915228374314750045400$ | $9094947017729413243157556000$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which 0 are hyperelliptic):
- $y^2=x^3+a^{340} x+a^{340}$
- $y^2=x^3+a^{452} x+a^{452}$
- $y^2=x^3+a^{248} x+a^{248}$
- $y^2=x^3+a^{580} x+a^{581}$
- $y^2=x^3+a^{424} x+a^{424}$
- $y^2=x^3+a^{344} x+a^{345}$
- $y^2=x^3+a^{112} x+a^{112}$
- $y^2=x^3+a^{292} x+a^{293}$
- $y^2=x^3+a^{584} x+a^{584}$
- $y^2=x^3+a^{396} x+a^{397}$
- $y^2=x^3+a^{68} x+a^{68}$
- $y^2=x^3+a^{464} x+a^{465}$
- $y^2=x^3+a^{388} x+a^{388}$
- $y^2=x^3+a^{440} x+a^{441}$
- $y^2=x^3+a^{60} x+a^{61}$
- $y^2=x^3+a^{204} x+a^{205}$
- $y^2=x^3+a^{100} x+a^{101}$
- $y^2=x^3+a^{616} x+a^{616}$
- $y^2=x^3+a^{492} x+a^{493}$
- $y^2=x^3+a^{388} x+a^{389}$
- $y^2=x^3+a^{272} x+a^{272}$
- $y^2=x^3+a^{560} x+a^{560}$
- $y^2=x^3+a^{320} x+a^{321}$
- $y^2=x^3+a^{304} x+a^{304}$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5^{4}}$.
Endomorphism algebra over $\F_{5^{4}}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-114}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.625.ba | $2$ | (not in LMFDB) |