Invariants
| Base field: | $\F_{491}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 24 x + 491 x^{2}$ |
| Frobenius angles: | $\pm0.317836770105$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-347}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $20$ |
| Isomorphism classes: | 20 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $468$ | $241488$ | $118392300$ | $58120365888$ | $28536940889028$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $468$ | $241488$ | $118392300$ | $58120365888$ | $28536940889028$ | $14011639200421200$ | $6879714954732514908$ | $3377940044748542477568$ | $1658568561966234498539700$ | $814357163924324277262104528$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which 0 are hyperelliptic):
- $y^2=x^3+279 x+279$
- $y^2=x^3+226 x+452$
- $y^2=x^3+79 x+158$
- $y^2=x^3+469 x+447$
- $y^2=x^3+242 x+484$
- $y^2=x^3+416 x+341$
- $y^2=x^3+162 x+162$
- $y^2=x^3+291 x+91$
- $y^2=x^3+49 x+49$
- $y^2=x^3+471 x+471$
- $y^2=x^3+355 x+355$
- $y^2=x^3+334 x+334$
- $y^2=x^3+379 x+379$
- $y^2=x^3+442 x+393$
- $y^2=x^3+200 x+400$
- $y^2=x^3+325 x+325$
- $y^2=x^3+321 x+321$
- $y^2=x^3+335 x+335$
- $y^2=x^3+417 x+417$
- $y^2=x^3+355 x+219$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{491}$.
Endomorphism algebra over $\F_{491}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-347}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.491.y | $2$ | (not in LMFDB) |