Invariants
| Base field: | $\F_{491}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 33 x + 491 x^{2}$ |
| Frobenius angles: | $\pm0.232623770170$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-35}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $459$ | $240975$ | $118383444$ | $58120519275$ | $28536953155029$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $459$ | $240975$ | $118383444$ | $58120519275$ | $28536953155029$ | $14011639503296400$ | $6879714956664370839$ | $3377940044627667539475$ | $1658568561961436983082124$ | $814357163924246300417049375$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+231 x+462$
- $y^2=x^3+190 x+190$
- $y^2=x^3+333 x+175$
- $y^2=x^3+135 x+135$
- $y^2=x^3+308 x+125$
- $y^2=x^3+325 x+159$
- $y^2=x^3+159 x+318$
- $y^2=x^3+67 x+67$
- $y^2=x^3+228 x+228$
- $y^2=x^3+344 x+344$
- $y^2=x^3+244 x+244$
- $y^2=x^3+257 x+257$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{491}$.
Endomorphism algebra over $\F_{491}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-35}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.491.bh | $2$ | (not in LMFDB) |