Properties

Label 1.491.abh
Base field $\F_{491}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{491}$
Dimension:  $1$
L-polynomial:  $1 - 33 x + 491 x^{2}$
Frobenius angles:  $\pm0.232623770170$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-35}) \)
Galois group:  $C_2$
Jacobians:  $12$
Isomorphism classes:  12

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $459$ $240975$ $118383444$ $58120519275$ $28536953155029$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $459$ $240975$ $118383444$ $58120519275$ $28536953155029$ $14011639503296400$ $6879714956664370839$ $3377940044627667539475$ $1658568561961436983082124$ $814357163924246300417049375$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{491}$.

Endomorphism algebra over $\F_{491}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-35}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.491.bh$2$(not in LMFDB)