Invariants
| Base field: | $\F_{463}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 4 x + 463 x^{2}$ |
| Frobenius angles: | $\pm0.529628997128$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-51}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $32$ |
| Isomorphism classes: | 32 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $468$ | $215280$ | $99247356$ | $45953668800$ | $21276737698788$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $468$ | $215280$ | $99247356$ | $45953668800$ | $21276737698788$ | $9851127805949040$ | $4561072093620996876$ | $2111776380478252051200$ | $977752464194190745701108$ | $452699390921255283855020400$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which 0 are hyperelliptic):
- $y^2=x^3+50 x+150$
- $y^2=x^3+130 x+130$
- $y^2=x^3+239 x+239$
- $y^2=x^3+291 x+291$
- $y^2=x^3+6 x+6$
- $y^2=x^3+372 x+190$
- $y^2=x^3+394 x+394$
- $y^2=x^3+364 x+364$
- $y^2=x^3+353 x+133$
- $y^2=x^3+217 x+188$
- $y^2=x^3+222 x+203$
- $y^2=x^3+7 x+21$
- $y^2=x^3+136 x+408$
- $y^2=x^3+133 x+399$
- $y^2=x^3+146 x+438$
- $y^2=x^3+66 x+198$
- $y^2=x^3+15 x+45$
- $y^2=x^3+88 x+264$
- $y^2=x^3+410 x+410$
- $y^2=x^3+148 x+148$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{463}$.
Endomorphism algebra over $\F_{463}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-51}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.463.ae | $2$ | (not in LMFDB) |