Properties

Label 1.463.as
Base Field $\F_{463}$
Dimension $1$
Ordinary Yes
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{463}$
Dimension:  $1$
L-polynomial:  $1 - 18 x + 463 x^{2}$
Frobenius angles:  $\pm0.362638179038$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-382}) \)
Galois group:  $C_2$
Jacobians:  8

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

This isogeny class contains the Jacobians of 8 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 446 214972 99272018 45954134496 21276725876846 9851127468622204 4561072096726232834 2111776380633341858688 977752464194057836831454 452699390921213416991236732

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 446 214972 99272018 45954134496 21276725876846 9851127468622204 4561072096726232834 2111776380633341858688 977752464194057836831454 452699390921213416991236732

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{463}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-382}) \).
All geometric endomorphisms are defined over $\F_{463}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
1.463.s$2$(not in LMFDB)