Invariants
| Base field: | $\F_{463}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 18 x + 463 x^{2}$ |
| Frobenius angles: | $\pm0.362638179038$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-382}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $446$ | $214972$ | $99272018$ | $45954134496$ | $21276725876846$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $446$ | $214972$ | $99272018$ | $45954134496$ | $21276725876846$ | $9851127468622204$ | $4561072096726232834$ | $2111776380633341858688$ | $977752464194057836831454$ | $452699390921213416991236732$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+153 x+459$
- $y^2=x^3+287 x+398$
- $y^2=x^3+145 x+145$
- $y^2=x^3+460 x+460$
- $y^2=x^3+72 x+72$
- $y^2=x^3+170 x+47$
- $y^2=x^3+349 x+349$
- $y^2=x^3+374 x+374$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{463}$.
Endomorphism algebra over $\F_{463}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-382}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.463.s | $2$ | (not in LMFDB) |